Water Quality Prognosis and Cost Analysis of Pollution Abatement Measures in the Rhine Basin (The River Rhine Project: Ever)

1994 ◽  
Vol 29 (3) ◽  
pp. 95-106
Author(s):  
Alfred P. Benoist ◽  
Gerard H. Broseliske

For priority pollutants, the international Rhine Action Programme (RAP) aims to meet the quality objectives for the Rhine, set by the International Rhine Commission (IRC), by the year 2000. An assessment must be carried out to define additional measures exceeding best available technology (BAT) for point sources and best environmental practice (BEP) for diffuse sources for those priority pollutants still violating the quality objectives of the Rhine after implementing BAT and BEP only. To carry out the required assessments, an excessive amount of work and money is needed, including the application of sophisticated calculation models. For prioritizing reasons, the Institute for Inland Water Management and Waste Water Treatment (RIZA) initiated a project called EVER, which was conducted by DHV Water BV. EVER is the abbreviation of the Dutch equivalent for Effective Distribution of Emission Reductions (Effective Verdeling van Emissie Reducties). The aim of this project is to carry out a first and crude evaluation of the impact of abatement measures (BAT and BEP), as set by the IRC for the period 1985-1995. For those pollutants still showing a violation of the quality objectives for the Rhine in the year 1995, a range finding method is used, to predict the costs and impact of abatement measures exceeding BAT and BEP on the water quality of the Rhine. So, EVER is a management tool to prioritize the work to be done within the frame-work of the IRC, triggering the application of e.g. sophisticated calculation models for a selected number of priority pollutants. In EVER, the prognosis of the reduction of specific discharge rates for approximately forty priority pollutants is given for twelve sub-catchment areas for the year 1995. This prognosis is used to predict concentrations at eight international monitoring locations in the Rhine basin, using the discharges and concentrations of the year 1985 as a reference. The predicted concentrations for the year 1995 are compared with the (preliminary) water quality objectives as set by the IRC. The results indicate, that for six of the selected pollutants the number of available data is too small for sound predictions. Fifteen of the selected pollutants will satisfy the water quality objectives in 1995. Twenty (half) of the selected pollutants will still violate the quality objectives at several monitoring locations. These twenty pollutants are the basis for priorities to be set within the frame-work of the IRC for phase 3 (1995-2000) of the RAP. For these pollutants, additional abatement measures exceeding BAT and BEP are selected in EVER for the manageable groups of sources (anthropogenic non-point sources, industrial sources and municipal sources). Each measure is analyzed separately for costs and effectiveness. Finally the results of this project are integrated into a matrix system which will enable us to select the most effective mix of pollution abatement measures at the lowest costs. The result of the selected additional measures exceeding BAT and BEP shows that 17 pollutants will still violate the quality objectives.

1998 ◽  
Vol 33 (4) ◽  
pp. 519-550 ◽  
Author(s):  
Paul A. Zandbergen ◽  
Ken J. Hall

Abstract The use of indices in ecosystem management is attractive because it allows for the representation of a complex set of information on ecosystem variables in a simple fashion. Recently the British Columbia Ministry of Environment, Lands and Parks developed the British Columbia Water Quality Index (BCWQI). As this index is currently being considered as the basis for other provincial indices and a national water quality index, the character of the BCWQI needs to be carefully considered. This study evaluates the performance of the BCWQI and assesses how useful and appropriate it is as a management tool at the watershed level. For this purpose the index is used to express the results of two sampling programs, one by the British Columbia Ministry of Environment, Lands and Parks, and the other by the Westwater Research Centre, of two relatively small watersheds in the Greater Vancouver area: the Brunette River watershed, heavily impacted by urbanization, and the Salmon River watershed on the urban-rural fringe. For both watersheds the intended use is the protection of aquatic life and only those water quality objectives are considered. The results indicate that the BCWQI is extremely sensitive to sampling design and highly dependent on the specific application of water quality objectives. A comparison is made with another type of index in widespread use in North America: the National Sanitation Foundation Water Quality Index (NSFWQI). This index appears promising for stream stewardship groups because of its simplicity and ease of use. For watershed managers, an alternative to the BCWQI is suggested, based on exceedance factors for individual objectives. This Simple Water Quality Index (SWQI) recognizes the importance of objectives that are specific to a particular water body, but overcomes some of the limitations of the BCWQI. A presentation format is suggested for objective exceedance factors, with a clear indication of exactly which objectives were included — without this, the final numerical index value is meaningless. This study suggests that the BCWQI in its current form has serious limitations for comparing water bodies and for establishing management priorities. If local watershed managers use the BCWQI in guiding efforts to protect aquatic resources, they should consider these limitations carefully.


2019 ◽  
Vol 14 (No. 2) ◽  
pp. 76-83
Author(s):  
Jan Gregar ◽  
Jan Petrů ◽  
Jana Novotná

Švihov dam, the largest drinking water source in the Czech Republic and Central Europe, has problems with eutrophication. The Švihov dam catchment spreads over 1200 km<sup>2</sup> and supplies over 1.5 million people in the capital of Prague and the Central Bohemian region with drinking water. Due to intensive agricultural activities and a lack of wastewater treatment plants in small settlements, the water quality is deteriorating. As a result, corrective measures need to be taken. Technological Agency of the Czech Republic supported this research which proposes different scenarios for a reduction of water quality degradation in the dam. The Trnávka dam watershed was chosen for study purposes as it occupies one quarter of the Švihov dam watershed. Hydrological balance was established using measured data. Point and non-point sources of nutrients were determined by field research and included in a Soil and Water Assessment Tool (SWAT) model. This study aims to propose complex watershed management to improve the state of the environment in the entire area and to reduce eutrophication. Different management practices would reduce nutrient loads of streams and increase water quality which is the critical factor in dam eutrophication. This research brings methodology and systematic approach to integrated management, and can be applied not only for the Švihov dam, but also for other watersheds, including those which function as drinking water supply.


2016 ◽  
Vol 12 (2) ◽  
pp. 309
Author(s):  
O. E. Ekenta

Catchment process simulation models are designed to model the interaction of hydrological, geochemical and ecological processes and the effects of change. TOMCAT, a catchment scale model was applied in modeling the transport of determinands from non-point (diffuse) sources to Mimram river, a tributary of the river Thames. The magnitude and timing of the processes taking place is stochastic with the model representing as accurately as possible the systematic and random variability of various model inputs and their inter-relationships. The results indicate that the BOD, NH4N and Un-ionised NH3 loads which enter the rivers from non-point sources increased by 0.55mg/l, 0.024mg/l and 0.001mg/l respectively. These values are relatively small. The Dissolved Oxygen concentration along the reach increased by 2.5 mg/l indicating substantial re-aeration along the reach. The accretion value for the conservative determinand Chloride was 3.75mg/l. Non-point source pollutants accretion to the Mimram is influenced by agricultural and silvicultural practices in the catchment. The results of the investigation indicate that the model could be adopted by environmental pollution control agencies as a management tool for intervention in the area of pollution abatement for catchments.


2007 ◽  
Vol 56 (4) ◽  
pp. 45-55 ◽  
Author(s):  
J.J.G. Zwolsman ◽  
A.J. van Bokhoven

It is generally recognized that climate change will affect the discharge regime of the Rhine River. Especially the anticipated increase in extreme river discharges (floods and droughts) poses serious problems to water management, both with regard to water quantity and water quality. Water quality effects of climate change are not sufficiently recognized, however. The purpose of this study is to investigate the impact of droughts on the water quality of the River Rhine. Time series of river flow and water quality were analyzed for station Lobith, located at the Dutch-German border. Over the past three decades, three major droughts were identified, occurring in the years 1976, 1991, and 2003. The water quality during these dry years was compared with the water quality in reference years, characterized by average hydrological conditions and similar chemical pollution. Four groups of water quality parameters were investigated: 1, general variables (water temperature, dissolved oxygen, chlorophyll-a); 2, major ions (chloride, sodium, sulfate, fluoride, bromide); 3, nutrients; and 4, heavy metals. It was found that water quality is negatively influenced by (summer) droughts, with respect to water temperature, eutrophication, major ions and heavy metals. Effects on nutrient concentrations were small for ammonium and could not be demonstrated for nitrate, nitrite and phosphate. The decline in water quality during summer droughts is both related to the high water temperatures and to low river discharges (limited dilution of the chemical load from point sources). Moreover, the impact of the 1976 drought on water quality was far more important than that of the 2003 drought, indicating that the impact of droughts on water quality will be greater when the water quality is already poor.


2010 ◽  
Vol 5 (4) ◽  
Author(s):  
J. L. Manuszak ◽  
M. MacPhee ◽  
S. Liskovich ◽  
L. Feldsher

The City of Baltimore, Maryland is one of many US cities faced with challenges related to increasing potable water demands, diminishing fresh water supplies, and aging infrastructure. To address these challenges, the City recently undertook a $7M study to evaluate water supply and treatment alternatives and develop the conceptual design for a new 120 million gallon per day (MGD) water treatment plant. As part of this study, an innovative raw water management tool was constructed to help model source water availability and predicted water quality based on integration of a new and more challenging surface water supply. A rigorous decision-making approach was then used to screen and select appropriate treatment processes. Short-listed treatment strategies were demonstrated through a year-long pilot study, and process design criteria were collected in order to assess capital and operational costs for the full-scale plant. Ultimately the City chose a treatment scheme that includes low-pressure membrane filtration and post-filter GAC adsorption, allowing for consistent finished water quality irrespective of which raw water supply is being used. The conceptual design includes several progressive concepts, which will: 1) alleviate treatment limitations at the City's existing plants by providing additional pre-clarification facilities at the new plant; and 2) take advantage of site conditions to design and operate the submerged membrane system by gravity-induced siphon, saving the City significant capital and operations and maintenance (O&M) costs. Once completed, the new Fullerton Water Filtration Plant (WFP) will be the largest low-pressure membrane plant in North America, and the largest gravity-siphon design in the world.


2005 ◽  
Vol 5 (6) ◽  
pp. 95-104 ◽  
Author(s):  
D.N. Barton ◽  
T. Saloranta ◽  
T.H. Bakken ◽  
A. Lyche Solheim ◽  
J. Moe ◽  
...  

The evaluation of water bodies “at risk” of not achieving the Water Framework Directive's (WFD) goal of “good status” begs the question of how big a risk is acceptable before a programme of measures should be implemented. Documentation of expert judgement and statistical uncertainty in pollution budgets and water quality modelling, combined with Monte Carlo simulation and Bayesian belief networks, make it possible to give a probabilistic interpretation of “at risk”. Combined with information on abatement costs, a cost-effective ranking of measures based on expected costs and effect can be undertaken. Combined with economic valuation of water quality, the definition of “disproportionate cost” of abatement measures compared to benefits of achieving “good status” can also be given a probabilistic interpretation. Explicit modelling of uncertainty helps visualize where research and consulting efforts are most critical for reducing uncertainty. Based on data from the Morsa catchment in South-Eastern Norway, this paper discusses the relative merits of using Bayesian belief networks when integrating biophysical modelling results in the benefit-cost analysis of derogations and cost-effectiveness ranking of abatement measures under the WFD.


1994 ◽  
Vol 29 (3) ◽  
pp. 207-209 ◽  
Author(s):  
H. Puzicha

Effluents from point sources (industries, communities) and diffuse inputs introduce pollutants into the water of the river Rhine and cause a basic contaminant load. The aim is to establish a biological warning system to detect increased toxicity in addition to the already existing chemical-physical monitoring system. To cover a wide range of biocides, continuous working biotests at different trophic levels (bacteria, algae, mussels, water fleas, fishes) have been developed and proved. These are checked out for sensitivity against toxicants, reaction time, validity of data and practical handling under field conditions at the river. Test-specific appropriate methods are found to differentiate between the normal range of variation and true alarm signals.


1998 ◽  
Vol 38 (11) ◽  
pp. 141-148 ◽  
Author(s):  
P. Marjanovic ◽  
M. Miloradov

The new National water policy will change the way water quality is managed in South Africa. The paper considers the water policy and the repercussions it will have for water quality monitoring in South Africa. Using the systems approach the paper discusses an integrated water quality monitoring system for ambient water quality and point and non point sources of aquatic pollution. The proposed methodology makes possible continuos assessment of water quality in an efficient manner so as to support water quality management in South Africa.


Sign in / Sign up

Export Citation Format

Share Document