runoff losses
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 25)

H-INDEX

24
(FIVE YEARS 3)

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2228
Author(s):  
Arno Rosemarin ◽  
Nelson Ekane ◽  
Kim Andersson

The pig and poultry industries continue to grow across the world and together they provide the majority of meat consumed. The European Union (EU) in particular has the highest global relative meat production by monogastrics (i.e., pig and poultry). The fate of phosphorus (P) in pig and poultry farming was studied, accounting for P content in feed, animals, manure, soil, and runoff. P input from manure, and P offtake in crops receiving manure, were plotted against each other to arrive at “safe” P loading rates, in order to minimize soil P surpluses along the lines of the EU Nitrogen Expert Panel in their work with nitrogen (N). However, it was observed that it is the N/P ratio and the background soil P levels that determine whether a certain manure will end up producing surplus levels of soil P. Critical N/P weight ratios were derived over different crop P offtake rates when applying stored manure to croplands. At spreading rates of 170 and 250 kgN/ha/year and a crop P offtake of 15 or 30 kgP/ha/year, stored pig and chicken manure result in soil P surpluses. An important factor in determining effective N/P ratios is the plant availability of N in stored manure, which runs at around 47%, estimated from previously published results. The minimization of N losses to the atmosphere and to groundwater in housing, storage, and spreading of manure has a major impact on the N/P weight ratio of the manure that ends up on fields. In most cases, half of the ex-animal N content has been lost in stored or degraded manure, with N/P weight ratios running at two and less. Following only the EU Nitrates Directive, which allows for a maximum of 170 kgN/ha/year in NVZs (Nitrate Vulnerable Zones), will often result in soil P surpluses leading to runoff losses to adjacent water bodies. Therefore, for the pig and poultry industries to continue thriving, measures are required to better manage manure, including improved storage and spreading techniques, acidification, separation, struvite extraction and ammonia stripping of pig slurry, and drying and pelleting of poultry litter. This way, excess manure and derived biofertilizers from animal farms can find their way back into the commercial market, instead of ending up as legacy P in watersheds and coastal zones.


2021 ◽  
Vol 12 ◽  
Author(s):  
Feifan Zeng ◽  
Zheng Zuo ◽  
Juncheng Mo ◽  
Chengyu Chen ◽  
Xingjian Yang ◽  
...  

Graphical AbstractThe experimental location and setup details.


Author(s):  
Janae Bos ◽  
Mark Williams ◽  
Douglas Smith ◽  
Shalamar Armstrong ◽  
Daren Harmel

2021 ◽  
Author(s):  
Jose Alfonso Gomez ◽  
Gema Guzman

<p>Maintenance of ground cover vegetation in olive orchards has been shown to reduce soil and runoff losses as compared to bare soil. However, extrapolation of its impact at hillslope scale under different conditions still challenging for several reasons. One is the limited duration of available experiments, usually shorter than 3 years, which can´t capture the annual variability in precipitation typical of Mediterranean type of climate. A second reason is the small scale in which many experiments are carried out, which do not capture all the relevant erosion processes at hillslope scale. A third reason, hardly discussed, is the use of the runoff plots that limits traffic resulting in conditions that might not be fully representative of actual orchards.</p><p> </p><p>For evaluating the effect of temporary cover crops on water erosion processes in olives at hillslope scale, runoff and soil losses have been monitored from 2008 to 2019 in La Conchuela. This is an olive farm located in Southern Spain, where average annual precipitation is 655 mm, on Typic Haploxerert (clay content > 50%). Six runoff plots (14x24 m) delimited by steel beams on concrete foundation were established in a 13.4 % slope, containing 3 rows of 4 trees. This allows normal farm operations. Since 2008-2009, two soil management systems, conventional tillage (CT) and temporary cover crops (CC), were tested. In the two CT plots ground vegetation was controlled by 2-3chisel ploughing passes during the year. CC in the other four plots consisted of sowing manually in mid Fall a grass or a mix with grasses every 1 to 3 years without disturbing the soil surface, been mowed in early Spring. The aim of this cover crop was to be grown up spontaneously from seed produced the previous year. Weeds along the tree rows are controlled by herbicides in both cases.</p><p>No significant differences were detected (p < 0.05) for the whole period, although CC showed lower runoff and soil losses values. Runoff data ranged from 157.7 ± 61.2 to 144.5 ± 46.4 mm, and soil losses varied from 24.3 ± 9.1 to 16.4 ± 7.0 t·ha<sup>-1</sup> at the CT and CC treatments respectively. The lack of statistical differences can be explained by the large variability recorded in the measurements at the six plots, especially at the CC due to the specific weather and traffic conditions. Our experiment shows how in a crop, olives, subject to intense traffic during the harvesting season (happening in late fall or early winter, rainy season) and in an orchard on heavy soils, maintenance of a good cover crop is challenging in many years. Our results call for caution when extrapolating the benefits of cover crops in olives from the experimental plots to real world conditions. It also highlights the need for improved soil management under these conditions (e.g. controlled traffic, combination with inert mulch, …) to improve soil and water conservation in intensively cultivated olive orchards in heavy soils.</p><p> </p>


2020 ◽  
Vol 304 ◽  
pp. 107135
Author(s):  
Yali Wu ◽  
Weichen Huang ◽  
Feng Zhou ◽  
Jin Fu ◽  
Sheng Wang ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2777
Author(s):  
Mohamad Rammal ◽  
Emmanuel Berthier

Quantifying urban runoff during frequent rainfall events is a key element in quality management of urban water due to their high contribution to the annual runoff flow. This explains the growing interest among hydrologists in studying runoff flow on urban surfaces. In this paper, we review most of the experimental approaches as well as the modeling ones conducted in the literature to understand and estimate runoff flow on urban areas. This review highlights the incoherence between our current understanding of the hydrological behavior of urban areas during frequent events and our conception of the loss functions in the urban drainage models. Field studies provided more insight into the determinant processes occurring on the different surface types during frequent events with depression storage being a fundamental element varying between surface types and for the same surface type and infiltration process being relatively important on paved areas especially in their cracks that constitute preferential pathways for rainwater. Analyzing a wide range of urban drainage models showed that these elements along with the temporal evolution of the hydrological behavior of urban surfaces due to seasonal and state conditions are not fully integrated in the models’ structures, which were initially developed for heavy rainfall events. Adapting the assumptions of urban drainage models based on these new factors must improve the performance of hydrological models for frequent rainfall events.


HortScience ◽  
2020 ◽  
Vol 55 (7) ◽  
pp. 1005-1013
Author(s):  
Baoxin Chang ◽  
Benjamin Wherley ◽  
Jacqueline Aitkenhead-Peterson ◽  
Nadezda Ojeda ◽  
Charles Fontanier ◽  
...  

Wetting agents have been widely used in the turf industry for ameliorating hydrophobic soil conditions and improving water use efficiency. However, limited information is available regarding potential benefits of wetting agents on fine textured soil lawns where wettable soils are commonly found, because most prior studies have been conducted in sand-based turf systems. This 2-year field study evaluated the potential for wetting agents to improve turf quality, as well as to reduce runoff losses of water and nutrients from st. augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] lawns. Over two seasons, turfgrass quality, percent green cover, and soil moisture in plots were evaluated in response to wetting agent and fertilizer treatments. During precipitation events, total runoff volumes were measured, as well as total export of nutrients including NO3-N, NH4-N, total dissolved N, dissolved organic N, dissolved organic C, and PO4-P. No runoff was detected from any treatments when precipitation was less than 13 mm. St. augustinegrass turfgrass quality and soil moisture were slightly improved by wetting agent and fertilizer treatments during the study, but no significant effects of either of the treatments were found on runoff volumes or nutrient exports. Although turf was managed under deficit irrigation levels of 0.3 × reference evapotranspiration, irrigation events were not withheld due to rainfall, and thus, little to no drought stress was observed during the study.


Sign in / Sign up

Export Citation Format

Share Document