scholarly journals Effect of Banana Waste Biochar on Physiological Responses and Growth of Seashore Paspalum

2021 ◽  
Vol 22 (8) ◽  
pp. 1-10
Author(s):  
Dounia Fetjah ◽  
Lalla Fatima Ezzahra Ainlhout ◽  
Bouchaib Ihssane ◽  
Laila Bouqbis
2019 ◽  
Vol 144 (5) ◽  
pp. 305-313
Author(s):  
Bo Xiao ◽  
David Jespersen

Turfgrasses have varying tolerance to waterlogging conditions. The objective of this study was to identify important root traits and physiological responses to waterlogging stress in seashore paspalum (Paspalum vaginatum) and bermudagrass (Cynodon sp.). After being exposed to waterlogging conditions for 28 days, turf quality, leaf photosynthesis, transpiration rate, stomatal conductance (gS), and root fresh weight were significantly decreased in bermudagrass, and root lipid peroxidation was significantly increased. However, seashore paspalum was found to be more tolerant to waterlogging conditions and changes in turf quality, photosynthesis, or lipid peroxidation were not seen. The waterlogging treatments increased specific root length (SRL), surface area, and volume and decreased root respiration and diameter to a greater extent in seashore paspalum compared with bermudagrass. Under waterlogging conditions, root aerenchyma formation was found in both seashore paspalum and bermudagrass, but to a greater extent in seashore paspalum. Both grasses exhibited significant increases in root water-soluble carbohydrate (WSC) but to a lesser extent in seashore paspalum than in bermudagrass. Shoot WSC remained unchanged in seashore paspalum but was significantly increased in bermudagrass. These results indicate greater root morphological changes such as root volume, SRL, and root porosity, as well as lower root respiration may be important contributors to waterlogging tolerance for seashore paspalum.


Crop Science ◽  
2019 ◽  
Vol 59 (2) ◽  
pp. 778-786 ◽  
Author(s):  
David Jespersen ◽  
Monique Leclerc ◽  
Gengsheng Zhang ◽  
Paul Raymer

2015 ◽  
Vol 140 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Junqin Zong ◽  
Yanzhi Gao ◽  
Jingbo Chen ◽  
Hailin Guo ◽  
Yi Wang ◽  
...  

Waterlogging (WL) negatively affects plant growth and development, but the physiological responses of turfgrass species to WL are not well understood. The objective of this study was to examine growth and physiological mechanisms of WL tolerance in warm-season turfgrass species. Knotgrass (Paspalum paspaloides), spiny mudgrass (Pseudoraphis spinescens), seashore paspalum (Paspalum vaginatum), and centipedegrass (Eremochloa ophiuroides) were subjected to 30 days of WL. At the end of the treatment, knotgrass and spiny mudgrass maintained the shoot and root biomass while seashore paspalum and centipedegrass showed reductions in biomass under WL. Root oxidase activity (ROA) was unaffected until after 12 or 18 days of WL but decreased by 14.3%, 17.8%, 32.0%, and 68.7% at 30 days of WL for knotgrass, spiny mudgrass, seashore paspalum, and centipedegrass, respectively. Waterlogging increased root activities of lactate dehydrogenase and alcohol dehydrogenase, but generally to a lesser extent in knotgrass and spiny mudgrass. The leaf and root activities of superoxide dismutase (SOD) and peroxidase (POD) were induced after 6 or 12 days of WL, but to a greater extent for knotgrass and spiny mudgrass. At 30 days of WL, the increased leaf and root activities of SOD and POD were higher in knotgrass and spiny mudgrass than that of seashore paspalum and centipedegrass; while centipedegrass showed 37.8% reduction in root SOD activity. The total soluble protein (TSP) concentration remained unchanged in both leaves and roots during the entire WL treatment for knotgrass, while a decreased leaf TSP was found in the other three species after 12 or 24 days of WL as well as in the roots of seashore paspalum and centipedegrass. More reductions in leaf or root TSP were observed in seashore paspalum and centipedegrass than in knotgrass and spiny mudgrass at 30 days of WL. The results indicated that higher ROA, activities of antioxidant enzymes and TSP contributed to WL tolerance of warm-season turfgrass species.


2020 ◽  
Vol 29 (4) ◽  
pp. 685-690
Author(s):  
C. S. Vanaja ◽  
Miriam Soni Abigail

Purpose Misophonia is a sound tolerance disorder condition in certain sounds that trigger intense emotional or physiological responses. While some persons may experience misophonia, a few patients suffer from misophonia. However, there is a dearth of literature on audiological assessment and management of persons with misophonia. The purpose of this report is to discuss the assessment of misophonia and highlight the management option that helped a patient with misophonia. Method A case study of a 26-year-old woman with the complaint of decreased tolerance to specific sounds affecting quality of life is reported. Audiological assessment differentiated misophonia from hyperacusis. Management included retraining counseling as well as desensitization and habituation therapy based on the principles described by P. J. Jastreboff and Jastreboff (2014). A misophonia questionnaire was administered at regular intervals to monitor the effectiveness of therapy. Results A detailed case history and audiological evaluations including pure-tone audiogram and Johnson Hyperacusis Index revealed the presence of misophonia. The patient benefitted from intervention, and the scores of the misophonia questionnaire indicated a decrease in the severity of the problem. Conclusions It is important to differentially diagnose misophonia and hyperacusis in persons with sound tolerance disorders. Retraining counseling as well as desensitization and habituation therapy can help patients who suffer from misophonia.


2002 ◽  
Author(s):  
Rebecca L. Stump ◽  
Judith C. Conger ◽  
Scott Vrana

1992 ◽  
Author(s):  
Helen M. Murphy ◽  
Cyrilla H. Wideman

2007 ◽  
Author(s):  
Arianne D. Stevens ◽  
Beverly J. Wilson ◽  
Alesha M. Muljat ◽  
Rachel A. Montague ◽  
Natalie P. Goodwin

Sign in / Sign up

Export Citation Format

Share Document