scholarly journals The Comparison of Seismic Effects of Near-field and Far-field Earthquakes on Relative Displacement of Seven-storey Concrete Building with Shear Wall

2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 40-46 ◽  
Author(s):  
Mahdi Heydari ◽  
Mahdi Mousavi

In the past few years, numerous studies on the effects of near-field earthquakes on the response of structures and their differences with far-field earthquakes imply the attention of researchers to this issue. In this regard, the objectives of present study are to study the effects of near-field earthquakes on the behavior of structures and to compare these types of earthquakes with far-field ones. To do this, the characterization of near-field earthquakes and their descriptions are used to define the differences between near-field and far-field earthquakes in regard to radically distinctive responses of structures. In the present study, the incremental dynamic analysis of a seven-storey building with concrete structure for few near-field and far-field earthquakes is done and the associated diagrams of relative structural displacement are compared. In the end, the comparison of these plots is used to denote the differences in the structural behaviors of these two types of earthquakes.

2016 ◽  
Vol 72 (5) ◽  
pp. 515-522 ◽  
Author(s):  
Sarah Hoffmann-Urlaub ◽  
Tim Salditt

This paper reports on the fabrication and characterization of X-ray waveguide beamsplitters. The waveguide channels were manufactured by electron-beam lithography, reactive ion etching and wafer bonding techniques, with an empty (air) channel forming the guiding layer and silicon the cladding material. A focused synchrotron beam is efficiently coupled into the input channel. The beam is guided and split into two channels with a controlled (and tunable) distance at the exit of the waveguide chip. After free-space propagation and diffraction broadening, the two beams interfere and form a double-slit interference pattern in the far-field. From the recorded far-field, the near-field was reconstructed by a phase retrieval algorithm (error reduction), which was found to be extremely reliable for the two-channel setting. By numerical propagation methods, the reconstructed field was then propagated along the optical axis, to investigate the formation of the interference pattern from the two overlapping beams. Interestingly, phase vortices were observed and analysed.


Author(s):  
Sheldon Schultz

In the past few years the field of near-field scanning optical microscopy (NSOM) has developed rapidly with applications spanning all the physical sciences. A key goal of this form of microscopy is to obtain resolution at levels well beyond those possible with the usual far-field optics. In contrast to far-field optics, which is bounded by the well known limits imposed by diffraction, near-field optics has no "in principle" fundamental lower limit in lateral size, at least down to atomic dimensions, although in practice, signal-to-noise considerations may restrict the application of NSOM to a few nanometers.The simplest form of NSOM to visualize is based on the principle of a sub-wavelength aperture (with D/λ < < 1) in an opaque plane. Light impinging on this aperture may only be transmitted through the diameter D, and, indeed, were it observed in the far-field, would be spread out over the entire half space due to diffraction. However, if the sample to be studied is placed in the near-field of the aperture, say within a distance D away, the region illuminated will also be restricted to a lateral dimension very close to D.


1995 ◽  
Vol 3 (8) ◽  
pp. 3-4
Author(s):  
Sheldon Schultz

In the past few years the field of near-field scanning optical microscopy (NSOM) has developed rapidly with applications spanning all the physical sciences. A key goal of this form of microscopy is to obtain resolution at levels well beyond those possible with the usual far-field optics. In contrast to far-field optics, which is bounded by the well known limits imposed by diffraction, near-field optics has no “in principle” fundamental lower limit in lateral size, at least down to atomic dimensions, although in practice, signal-to-noise considerations may restrict the application of NSOM to a few nanometers.


2016 ◽  
Vol 24 (7) ◽  
pp. 7019 ◽  
Author(s):  
Valentina Parigi ◽  
Elodie Perros ◽  
Guillaume Binard ◽  
Céline Bourdillon ◽  
Agnès Maître ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document