Miniaturized beamsplitters realized by X-ray waveguides

2016 ◽  
Vol 72 (5) ◽  
pp. 515-522 ◽  
Author(s):  
Sarah Hoffmann-Urlaub ◽  
Tim Salditt

This paper reports on the fabrication and characterization of X-ray waveguide beamsplitters. The waveguide channels were manufactured by electron-beam lithography, reactive ion etching and wafer bonding techniques, with an empty (air) channel forming the guiding layer and silicon the cladding material. A focused synchrotron beam is efficiently coupled into the input channel. The beam is guided and split into two channels with a controlled (and tunable) distance at the exit of the waveguide chip. After free-space propagation and diffraction broadening, the two beams interfere and form a double-slit interference pattern in the far-field. From the recorded far-field, the near-field was reconstructed by a phase retrieval algorithm (error reduction), which was found to be extremely reliable for the two-channel setting. By numerical propagation methods, the reconstructed field was then propagated along the optical axis, to investigate the formation of the interference pattern from the two overlapping beams. Interestingly, phase vortices were observed and analysed.

2005 ◽  
Vol 14 (4) ◽  
pp. 796-801 ◽  
Author(s):  
Zhu Hua-Feng ◽  
Xie Hong-Lan ◽  
Gao Hong-Yi ◽  
Chen Jian-Wen ◽  
Li Ru-Xin ◽  
...  

2004 ◽  
Vol 70 (1) ◽  
Author(s):  
F. Staub ◽  
M. Braud ◽  
J. E. Balmer ◽  
J. Nilsen ◽  
S. Bajt
Keyword(s):  
X Ray ◽  

2017 ◽  
Vol 50 (3) ◽  
pp. 701-711 ◽  
Author(s):  
Qi Zhong ◽  
Lars Melchior ◽  
Jichang Peng ◽  
Qiushi Huang ◽  
Zhanshan Wang ◽  
...  

Iterative phase retrieval has been used to reconstruct the near-field distribution behind tailored X-ray waveguide arrays, by inversion of the measured far-field pattern recorded under fully coherent conditions. It is thereby shown that multi-waveguide interference can be exploited to control the near-field distribution behind the waveguide exit. This can, for example, serve to create a secondary quasi-focal spot outside the waveguide structure. For this proof of concept, an array of seven planar Ni/C waveguides are used, with precisely varied guiding layer thickness and cladding layer thickness, as fabricated by high-precision magnetron sputtering systems. The controlled thickness variations in the range of 0.2 nm results in a desired phase shift of the different waveguide beams. Two kinds of samples, a one-dimensional waveguide array and periodic waveguide multilayers, were fabricated, each consisting of seven C layers as guiding layers and eight Ni layers as cladding layers. These are shown to yield distinctly different near-field patterns.


2016 ◽  
Vol 72 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Aike Ruhlandt ◽  
Tim Salditt

This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality.


Sign in / Sign up

Export Citation Format

Share Document