Near-field plasmon-resonance scanning microscopy

Author(s):  
Sheldon Schultz

In the past few years the field of near-field scanning optical microscopy (NSOM) has developed rapidly with applications spanning all the physical sciences. A key goal of this form of microscopy is to obtain resolution at levels well beyond those possible with the usual far-field optics. In contrast to far-field optics, which is bounded by the well known limits imposed by diffraction, near-field optics has no "in principle" fundamental lower limit in lateral size, at least down to atomic dimensions, although in practice, signal-to-noise considerations may restrict the application of NSOM to a few nanometers.The simplest form of NSOM to visualize is based on the principle of a sub-wavelength aperture (with D/λ < < 1) in an opaque plane. Light impinging on this aperture may only be transmitted through the diameter D, and, indeed, were it observed in the far-field, would be spread out over the entire half space due to diffraction. However, if the sample to be studied is placed in the near-field of the aperture, say within a distance D away, the region illuminated will also be restricted to a lateral dimension very close to D.

1995 ◽  
Vol 3 (8) ◽  
pp. 3-4
Author(s):  
Sheldon Schultz

In the past few years the field of near-field scanning optical microscopy (NSOM) has developed rapidly with applications spanning all the physical sciences. A key goal of this form of microscopy is to obtain resolution at levels well beyond those possible with the usual far-field optics. In contrast to far-field optics, which is bounded by the well known limits imposed by diffraction, near-field optics has no “in principle” fundamental lower limit in lateral size, at least down to atomic dimensions, although in practice, signal-to-noise considerations may restrict the application of NSOM to a few nanometers.


Author(s):  
Haseung Chung ◽  
Katsuo Kurabayashi ◽  
Suman Das

Solid immersion lenses (SIL) facilitate high numerical aperture (NA) and consequent sub-wavelength diffraction limited focusing in near-field optics based systems. Such systems are in commercial and research use for various applications including near-field scanning optical microscopy, ultra-high density magneto-optic data storage and near-field nanolithography. Here, we present a novel nanomanufacturing method using SIL-based near-field optics for laser-induced sub-micron patterning on silicon wafers. The near-field effect of SILs was investigated by using hemispherical BK7 lenses (n=1.5196, NA=0.9237) to superfocus an incident Q-switched, 532nm Nd:YAG laser beam transmitted through a focusing objective. This optical arrangement achieved a laser-processed feature resolution near the diffraction limit in air. Results of experiments that were conducted at various processing conditions to investigate the effects of varying incident laser power (with average pulse power less than 1W), pulse repetition rate, pulse width, number of pulses and size of SIL on processed feature size and resolution are presented.


Author(s):  
Dongbing Shao ◽  
Shaochen Chen

Photolithography has remained a useful micro-fabrication technology because of its high throughput, low cost, simplicity, and reproducibility over the past several decades. However its resolution is limited at a sub-wavelength scale due to optical diffraction. Among all different approaches to overcoming this problem, such as electron-beam lithography, imprint lithography and scanning probe lithography, near-field optical lithography inherits many merits of the traditional photolithography method. Major drawbacks of this approach include low contrast, low transmission and low density.


2021 ◽  
Vol 118 (4) ◽  
pp. e2012847118
Author(s):  
A. T. Costa ◽  
P. A. D. Gonçalves ◽  
D. N. Basov ◽  
Frank H. L. Koppens ◽  
N. Asger Mortensen ◽  
...  

We show that the Higgs mode of a superconductor, which is usually challenging to observe by far-field optics, can be made clearly visible using near-field optics by harnessing ultraconfined graphene plasmons. As near-field sources we investigate two examples: graphene plasmons and quantum emitters. In both cases the coupling to the Higgs mode is clearly visible. In the case of the graphene plasmons, the coupling is signaled by a clear anticrossing stemming from the interaction of graphene plasmons with the Higgs mode of the superconductor. In the case of the quantum emitters, the Higgs mode is observable through the Purcell effect. When combining the superconductor, graphene, and the quantum emitters, a number of experimental knobs become available for unveiling and studying the electrodynamics of superconductors.


1993 ◽  
Vol 1 (8) ◽  
pp. 2-3 ◽  
Author(s):  
Jean-Paul Revel

As the year ends there is a bumper crop of announcements of advances that I find absolutely amazing. First of course is the continued clever use of light as a veritable tool in manipulating everything from atoms (entrapping them in “atomic molasses”) to having tugs of war with biological motors (using “light tweezers”). But these developments will be for discussion another time. What I want to talk about in this installment are advances in Near Field Scanning Optical Microscopy (NSOM), which has now been used by Chichester and Betzig to visualize single molecules.In classical (far field) optics, resolution is limited by diffraction to about 1/2 the wavelength of the radiation used for imaging. Near field optics overcome this limitation by use of scanning techniques similar to those employed in Scanning Tunneling or Scanning Force Microscopy.


Nanophotonics ◽  
2013 ◽  
Vol 2 (5-6) ◽  
pp. 407-428 ◽  
Author(s):  
Xiaoqin Wu ◽  
Limin Tong

AbstractAs a combination of fiber optics and nanotechnology, optical microfibers and nanofibers (MNFs) have been emerging as a novel platform for exploring fiber-optic technology on the micro/nanoscale. Typically, MNFs taper drawn from glass optical fibers or bulk glasses show excellent surface smoothness, high homogeneity in diameter and integrity, which bestows these tiny optical fibers with low waveguiding losses and outstanding mechanical properties. Benefitting from their wavelength- or sub-wavelength-scale transverse dimensions, waveguiding MNFs exhibit a number of interesting properties, including tight optical confinement, strong evanescent fields, evident surface field enhancement and large and abnormal waveguide dispersion, which makes them ideal nanowaveguides for coherently manipulating light, and connecting fiber optics with near-field optics, nonlinear optics, plasmonics, quantum optics and optomechanics on the wavelength- or sub-wavelength scale. Based on optical MNFs, a variety of technological applications, ranging from passive micro-couplers and resonators, to active devices such as lasers and optical sensors, have been reported in recent years. This review is intended to provide an up-to-date introduction to the fabrication, characterization and applications of optical MNFs, with emphasis on recent progress in our research group. Starting from a brief introduction of fabrication techniques for physical drawing glass MNFs in Section 2, we summarize MNF optics including waveguiding modes, evanescent coupling, and bending loss of MNFs in Section 3. In Section 4, starting from a “MNF tree” that summarizes the applications of MNFs into 5 categories (waveguide & near field optics, nonlinear optics, plasmonics, quantum & atom optics, optomechanics), we go to details of typical technological applications of MNFs, including optical couplers, interferometers, gratings, resonators, lasers and sensors. Finally in Section 5 we present a brief summary of optical MNFs regarding their current challenges and future opportunities.


2007 ◽  
Vol 21 (08n09) ◽  
pp. 1649-1653
Author(s):  
CONSTANTINOS SIMSERIDES ◽  
ANNA ZORA ◽  
GEORGIOS TRIBERIS

We examine a quantum dot (QD) illuminated in the near field with subwavelength spatial resolution, while simultaneously it is subjected to a magnetic field of variable orientation and magnitude. The magnetic field orientation can conserve or destroy the zero-magnetic-field ("structural") symmetry. The asymmetry induced by the magnetic field -except for specific orientations along symmetry axes- can be uncovered in the near-field (NF) but not in the far-field (FF) spectra. We predict that NF magnetoabsorption experiments of realistic spatial resolution could reveal the QD symmetry. This exceptional symmetry-resolving power of the near-field optics, is lost in the far field.


2009 ◽  
Vol 105 (10) ◽  
pp. 103101 ◽  
Author(s):  
Ye-Wan Ma ◽  
Yu Zhang ◽  
Zhao-Wang Wu ◽  
Li-Hua Zhang ◽  
Jie Zhang ◽  
...  

2012 ◽  
Vol 50 (1) ◽  
pp. 64-73 ◽  
Author(s):  
K.D. Kihm ◽  
S. Cheon ◽  
J.S. Park ◽  
H.J. Kim ◽  
J.S. Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document