Chronic idiopathic pain following implant placement in the anterior maxilla: a case series

Dental Update ◽  
2018 ◽  
Vol 45 (11) ◽  
pp. 1043-1047 ◽  
Author(s):  
Jaymit Patel ◽  
Peter Nixon
Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5180
Author(s):  
Paul Leonhard Schuh ◽  
Hannes Wachtel ◽  
Florian Beuer ◽  
Funda Goker ◽  
Massimo Del Fabbro ◽  
...  

Background: Augmentation of the edentulous atrophic anterior region is a challenging situation. The purpose of this article was to evaluate the effectiveness of a collagenated cortical bone lamina of porcine origin for horizontal ridge augmentation in patients with inadequate alveolar ridge width undergoing immediate post-extraction implantation in the anterior sites, and to report on implant survival rates/complications. Materials and methods: The cases were extracted electronically from a large database according to these specific inclusion criteria: patients with inadequate alveolar ridge width in the anterior maxilla or mandible, who underwent immediate post-extraction implant placement and simultaneous alveolar bone reconstruction using xenogeneic cortical bone lamina. An additional layer of palatal connective tissue graft was inserted between lamina and the vestibular mucosa, for improving soft tissue healing. A collagenated bone substitute was additionally placed in the gap between the lamina and implant surface in all patients. The main outcomes were implant survival and complications. Results: Forty-nine patients with 65 implants were included. Patients’ mean age at the time of implant surgery was 60.0 ± 13.6 years. The mean follow-up was 60.5 ± 26.6 months after implant placement. The implant survival was 100%. Four postoperative complications occurred in four patients. No specific factor was found to be associated with complication occurrence. Conclusion: The use of collagenated cortical bone lamina can be considered as a successful option for alveolar reconstruction in immediate post-extraction implant insertion procedures in anterior regions with inadequate alveolar ridge width.


2020 ◽  
Vol 10 (2) ◽  
pp. 64-68
Author(s):  
Vinh Giap Nguyen ◽  
Dennis Flanagan ◽  
John Syrbu ◽  
Thomas T. Nguyen

2015 ◽  
Vol 41 (S1) ◽  
pp. 366-371 ◽  
Author(s):  
Alberto Monje ◽  
Florencio Monje ◽  
Federico Hernández-Alfaro ◽  
Raúl Gonzalez-García ◽  
Fernando Suárez-López del Amo ◽  
...  

The aim of the present study was to use cone-beam computerized tomography (CBCT) to assess horizontal bone augmentation using block grafts, harvested from either the iliac crest (IC) or mandibular ramus (MR) combined with particulate xenograft and a collagen membrane for in the severe maxillary anterior ridge defects (cases Class III-IV according to Cadwood and Howell's classification). Fourteen healthy partially edentulous patients requiring extensive horizontal bone reconstruction in the anterior maxilla were selected for the study. Nineteen onlay block grafts (from IC or MR) were placed. The amount of horizontal bone gain was recorded by CBCT at 3 levels (5, 7, and 11 mm from the residual ridge) and at the time of bone grafting as well as the time of implant placement (≈5 months). Both block donor sites provided enough ridge width for proper implant placement. Nonetheless, IC had significantly greater ridge width gain than MR (Student t test) (4.93 mm vs 3.23 mm). This was further confirmed by nonparametric Mann-Whitney test (P = .007). Moreover, mean pristine ridge and grafted ridge values showed a direct association (Spearman coefficient of correlation = .336). A combination of block graft, obtained from the IC or MR, combined with particulate xenograft then covered with an absorbable collagen membrane is a predictable technique for augmenting anterior maxillary horizontal ridge deficiency.


Author(s):  
Judd Sher ◽  
Kate Kirkham-Ali ◽  
Denny Luo ◽  
Catherine Miller ◽  
Dileep Sharma

The present systematic review evaluates the safety of placing dental implants in patients with a history of antiresorptive or antiangiogenic drug therapy. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. PubMed, Cochrane Central Register of Controlled Trials, Scopus, Web of Science, and OpenGrey databases were used to search for clinical studies (English only) to July 16, 2019. Study quality was assessed regarding randomization, allocation sequence concealment, blinding, incomplete outcome data, selective outcome reporting, and other biases using a modified Newcastle-Ottawa scale and the Joanna Briggs Institute critical appraisal checklist for case series. A broad search strategy resulted in the identification of 7542 studies. There were 28 studies reporting on bisphosphonates (5 cohort, 6 case control, and 17 case series) and one study reporting on denosumab (case series) that met the inclusion criteria and were included in the qualitative synthesis. The quality assessment revealed an overall moderate quality of evidence among the studies. Results demonstrated that patients with a history of bisphosphonate treatment for osteoporosis are not at increased risk of implant failure in terms of osseointegration. However, all patients with a history of bisphosphonate treatment, whether taken orally for osteoporosis or intravenously for malignancy, appear to be at risk of ‘implant surgery-triggered’ MRONJ. In contrast, the risk of MRONJ in patients treated with denosumab for osteoporosis was found to be negligible. In conclusion, general and specialist dentists should exercise caution when planning dental implant therapy in patients with a history of bisphosphonate and denosumab drug therapy. Importantly, all patients with a history of bisphosphonates are at risk of MRONJ, necessitating this to be included in the informed consent obtained prior to implant placement. The James Cook University College of Medicine and Dentistry Honours program and the Australian Dental Research Foundation Colin Cormie Grant were the primary sources of funding for this systematic review.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Craig E. Hofferber ◽  
J. Cameron Beck ◽  
Peter C. Liacouras ◽  
Jeffrey R. Wessel ◽  
Thu P. Getka

Abstract Background The purpose of this study was to evaluate the volumetric changes in partially edentulous alveolar ridges augmented with customized titanium ridge augmentation matrices (CTRAM), freeze-dried bone allograft, and a resorbable collagen membrane. Methods A pre-surgical cone beam computed tomography (CBCT) scan was obtained for CTRAM design/fabrication and to evaluate pre-surgical ridge dimensions. Ridge augmentation surgery using CTRAM, freeze-dried bone allograft, and a resorbable collagen membrane was performed at each deficient site. Clinical measurements of the area of augmentation were made at the time of CTRAM placement and re-entry, and a 2nd CBCT scan 7 months after graft placement was used for volumetric analysis. Locations of each CTRAM in situ were also compared to their planned positions. Re-entry surgery and implant placement was performed 8 months after CTRAM placement. Results Nine subjects were treated with CTRAM and freeze-dried bone allograft. Four out of the nine patients enrolled (44.4%) experienced premature CTRAM exposure during healing, and in two of these cases, CTRAM were removed early. Early exposure did not result in total graft failure in any case. Mean volumetric bone gain was 85.5 ± 30.9% of planned augmentation volume (61.3 ± 33.6% in subjects with premature CTRAM exposure vs. 104.9% for subjects without premature exposure, p = 0.03). Mean horizontal augmentation (measured clinically) was 3.02 mm, and vertical augmentation 2.86 mm. Mean surgical positional deviation of CTRAM from the planned location was 1.09 mm. Conclusion The use of CTRAM in conjunction with bone graft and a collagen membrane resulted in vertical and horizontal bone gain suitable for implant placement.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3828
Author(s):  
Jung-Gu Ji ◽  
Jung-A Yu ◽  
Seong-Ho Choi ◽  
Dong-Woon Lee

Vertical ridge augmentation for long-term implant stability is difficult in severely resorbed areas. We examined the clinical, radiological, and histological outcomes of guided-bone regeneration using novel titanium-reinforced microporous expanded polytetrafluoroethylene (MP-ePTFE) membranes. Eighteen patients who underwent implant placement using a staged approach were enrolled (period: 2018–2019). Vertical ridge augmentation was performed in areas with vertical bone defects ≥ 4 mm. Twenty-six implant fixtures were placed in 14 patients. At implant placement six fixtures had relatively low stability. On cone-beam computed tomography, the average vertical changes were 4.2 ± 1.9 (buccal), 5.9 ± 2.7 (central), and 4.4 ± 2.8 mm (lingual) at six months after vertical ridge augmentation. Histomorphometric analyses revealed that the average proportions of new bone, residual bone substitute material, and soft tissue were 34.91 ± 11.61%, 7.16 ± 2.74%, and 57.93 ± 11.09%, respectively. Stable marginal bone levels were observed at 1-year post-loading. The residual bone graft material area was significantly lower in the exposed group (p = 0.003). There was no significant difference in the vertical height change in the buccal side between immediately after the augmentation procedure and the implant placement reentry time (p = 0.371). However, all implants functioned well regardless of the exposure during the observation period. Thus, vertical ridge augmentation around implants using titanium-reinforced MP-ePTFE membranes can be successful.


Sign in / Sign up

Export Citation Format

Share Document