Roughness and micro pit defects on surface of SUS 430 stainless steel strip in cold rolling process

2015 ◽  
Vol 4 (4) ◽  
pp. 215-226 ◽  
Author(s):  
Changsheng Li ◽  
Tao Zhu ◽  
Bo Fu ◽  
Youyuan Li
2014 ◽  
Vol 21 (3) ◽  
pp. 282-286 ◽  
Author(s):  
Chang-sheng Li ◽  
Jin-shan Chen ◽  
Wen-long Han ◽  
You-yuan Li ◽  
Bo Fu

2007 ◽  
pp. 4926-4931
Author(s):  
A. Ferreira Filho ◽  
C. Herrera ◽  
Nelson Batista de Lima ◽  
R.L. Plaut ◽  
Angelo Fernando Padilha

2020 ◽  
Vol 51 (4) ◽  
pp. 1370-1383
Author(s):  
Junchen Li ◽  
Xutao Huang ◽  
Guocai Ma ◽  
Junwei Wang ◽  
Jixiang Pan ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 401
Author(s):  
Hainan He ◽  
Jian Shao ◽  
Xiaochen Wang ◽  
Quan Yang ◽  
Xiawei Feng

Due to the requirement of magnetic properties of silicon steel sheets, producing high-precision size strips is the main aim of the cold rolling industry. The tapered work roll shifting technique of the six-high cold rolling mill is effective in reducing the difference in transverse thickness of the strip edge, but the effective area is limited, especially for a high crown strip after the hot rolling process. The six-high mill with a small work roll size can produce a strip with higher strength and lower thickness under a smaller rolling load. At the same time, the profile of the strip can be substantially improved. By advancing a well-established analytical method, a series of simulation analyses are conducted to reveal the effectiveness of a small work roll radius for the strip profile in the six-high cold rolling process. Through the analysis of flattening deformation and deflection deformation on the load, the change rule of the strip profile produced by the work roll with a small roll diameter can be obtained. Combined with theoretical analysis and industrial experiments, it can be found that the improvement effect of the small work roll radius on the profile of the silicon strip is as significant.


1996 ◽  
Vol 82 (8) ◽  
pp. 677-682 ◽  
Author(s):  
Hideo YAMAMOTO ◽  
Yukihiko MATSUDAIRA ◽  
Takashi SHIBAHARA ◽  
Takeshi MASUI

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 677 ◽  
Author(s):  
Xin Jin ◽  
Changsheng Li ◽  
Yu Wang ◽  
Xiaogang Li ◽  
Yongguang Xiang ◽  
...  

In order to improve the cold rolled steel strip flatness, the load distribution of the tandem cold rolling process is subject to investigation and optimization. The strip deformation resistance model is corrected by an artificial neural network that is trained with the actual measured data of 4500 strip coils. Based on the model, a flatness prediction model of strip steel is established in a five-stand tandem cold rolling mill, and the precision of the flatness prediction model is verified by rolling experiment data. To analyze the effect of load distribution on flatness, the flatness of stand 4 is calculated to be 7.4 IU, 10.6 IU, and 16.8 IU under three typical load distribution modes. A genetic algorithm based on the excellent flatness is proposed to optimize the load distribution further. In the genetic algorithm, the classification of flatness of stand 4 calculated by the developed flatness prediction model is taken as the fitness function, with the optimal reduction of 28.6%, 34.6%, 27.3%, and 18.6% proposed for stands 1, 2, 3, and 4, respectively. The optimal solution is applied to a 1740 mm tandem cold rolling mill, which reduce the flatness classification from 10.8 IU to 3.2 IU for a 1-mm thick steel strip.


2012 ◽  
Vol 53 (11) ◽  
pp. 1837-1846 ◽  
Author(s):  
Toshiharu Morimoto ◽  
Fuyuki Yoshida ◽  
Yuji Kusumoto ◽  
Masahiko Oda ◽  
Jun Yanagimoto

2018 ◽  
Vol 936 ◽  
pp. 171-177
Author(s):  
Tai Xiong Guo ◽  
Xue Qiang Dong ◽  
Chang Rong Ran

According to that mini spangle is the most common defect affecting the appearance quality of hot-dip 55%Al-Zn alloy coated steel sheet, industrial experiments and statistical analysis were done to investigate the influence of cold rolling process on the formation of mini spangle. The results show that, with the decrease of rolling oil concentration, the increase of rolling time, and the increase of rolling pass, the probability of mini-spangle formation increases. Due to the different equipment conditions, the probability of mini-spangle formation on the upper and lower surfaces of steel strip is different. The reason of mini-spangle formation lies in the presence of carboxylates (R-COO-Fe) result from the residual emulsion on the surface of cold rolled steel strip. The carboxylates may interfere with the interfacial reaction between the steel substrate and Al-Zn bath, and result in more convex Fe5Si2Al20 phases formed on the surface of intermetallic compound layer. The Fe5Si2Al20 phases may provide more heterogeneous nucleation sites for the formation of Al-rich dendrites and lead to the formation of mini spangle.


Sign in / Sign up

Export Citation Format

Share Document