rolled sheet
Recently Published Documents


TOTAL DOCUMENTS

452
(FIVE YEARS 84)

H-INDEX

20
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 197
Author(s):  
Jun-Qiang Cong ◽  
Fei-Hu Guo ◽  
Jia-Long Qiao ◽  
Sheng-Tao Qiu ◽  
Hai-Jun Wang

Evolution of texture and α*-fiber texture formation mechanism of Fe-0.65%Si non-oriented electrical steel produced by Compact Strip Production (CSP) process during all the thermo-mechanical processing steps were investigated using electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) techniques. Columnar crystal structure of cast slab is fine and well-developed. Textures of the hot-rolled band are quite different in the thickness direction. During annealing of cold-rolled sheet, γ-fiber texture grains would nucleate and grow preferentially, and α*-fiber texture grains mainly nucleate and grow in the shear zone of α-fiber texture of cold-rolled sheet. During the recrystallization process, γ-fiber texture gradually concentrated to {111}<112>, and γ and α*-fiber texture increased significantly. {111}<112> texture priority nucleation at the initial stage of recrystallization. Due to the advantages of nucleation position and quantity, the content of α*-fiber texture is greater than {111}<112> texture in the mid-recrystallization. During grain growth process, {111}<112> oriented grains would grow selectively by virtue of higher mobility, sizes and quantity advantages than that of {411}<148 > and {100}<120>, resulting in the gradual increase of γ-fiber texture and the decline of α *-fiber texture.


Author(s):  
KHALID OMER ◽  
HAIDER ELBASHER ◽  
AHMED ELTYB MUSTAFA

There are many factors that affect the pitting corrosion of carbon steel (Q235A) some of them are related to the pipeline material such as material chemical composition specifications and other related to water specifications such as water temperature, pH of the water, and chemical and physical specification of water. In this study, the investigation was done for both water quality and materials of pipelines (Q235A), four samples from on a piece of same rolled sheet welded pipe(carbon steel (Q235A) were prepared and tested for chemicals composition, microstructure, roughness, and thickness, the test results shown that no difference observed for all results only on one sample have difference roughness value near to the welded joint, these test applied for 4 pieces took from one pipe to check the effect of rolling of these pipes that can cause dissimilarity .which enhance corrosion rates. Then the water quality was investigated for temperature 45C, pH equal to 9, chloride, TDS, and water pressure, the test result showed that the temperature of the water was 45 C pH 9 and contain chloride with a concentration quite enough to initiate pitting. From the collected data this study specified the causes of pitting corrosion in the studied area of water pipelines and summarized in the flowing, this pipelines exposed to high pressure than the required, and temperature of water reach over 45C in summer, and chloride iron have the main contribution on pitting corrosion of these pipes.


Author(s):  
І. Doschechkina

The aim of the work is to develop a method of increasing the technological plasticity while maintaining the strength and preventing aging of blanks of cold-rolled sheet steel 08Yu. The task of this work is research and determination of optimal temperature-time parameters of high-speed contact recrystallization annealing and subsequent aging of 08Yu steel sheet blanks to obtain the required level of mechanical properties that would improve their deformability and ability of very deep drawing during cold stamping of products. The optimal parameters of the speed mode are set recrystallization annealing of cold-rolled 08Yu sheet steel, which provides the best structure and properties for further cold pressure treatment. The temperature-time modes of further aging and possibilities to prevent the processes of its natural aging during prolonged operation or transportation have been studied. The method and modes of heat treatment of blanks from finished 08Yu sheet steel to facilitate their deformability and improve stamping in order to reduce waste in the manufacture of products by cold deformatiion with deep and complex drawing were suggested.


Author(s):  
A. B. Sychkov ◽  
N. V. Koptseva ◽  
Yu. Yu. Efimova ◽  
G. Ya. Atangulova (Kamalova)

Surface defects of sheet rolled products have a significant impact on its quality, performance and further processing of products, for example, on application of a protective anticorrosive coating. Therefore, the elimination of such defects and their accurate identification is an important aspect of sheet rolling production. Reducing the rejection of metal for surface defects enables to get a significant technical and economic effect. Investigation of the causes of defectiveness of the surface of sheet rolled products will make it possible to determine the source of the appearance of the defects and methods to prevent them. Determination of the nature and morphology of surface defects, the sources of which being metallic and non-metallic inclusions, as well as remnants of slag surface layer, scales from metallurgical and rolling stages, rolled into the surface of a hot-rolled sheet, is often difficult, since the appearance of the defects is very similar. It was shown that application of a scanning electron microscope (SEM) with micro-X-ray spectral analysis (MXSA), thermodynamic analysis makes it possible to determine the chemical composition of micro-areas and associate it with the end-to-end technology of sheet production. The article presents the results of identifying surface defects of cold-rolled sheet steel.


2021 ◽  
Vol 22 (21) ◽  
pp. 12075
Author(s):  
Mohammed A. Abosheasha ◽  
Toru Itagaki ◽  
Yoshihiro Ito ◽  
Motoki Ueda

The introduction of α-helical structure with a specific helix–helix interaction into an amphipathic molecule enables the determination of the molecular packing in the assembly and the morphological control of peptide assemblies. We previously reported that the amphiphilic polypeptide SL12 with a polysarcosine (PSar) hydrophilic chain and hydrophobic α-helix (l-Leu-Aib)6 involving the LxxxLxxxL sequence, which induces homo-dimerization due to the concave–convex interaction, formed a nanotube with a uniform 80 nm diameter. In this study, we investigated the importance of the LxxxLxxxL sequence for tube formation by comparing amphiphilic polypeptide SL4A4L4 with hydrophobic α-helix (l-Leu-Aib)2-(l-Ala-Aib)2-(l-Leu-Aib)2 and SL12. SL4A4L4 formed spherical vesicles and micelles. The effect of the LxxxLxxxL sequence elongation on tube formation was demonstrated by studying assemblies of PSar-b-(l-Ala-Aib)-(l-Leu-Aib)6-(l-Ala-Aib) (SA2L12A2) and PSar-b-(l-Leu-Aib)8 (SL16). SA2L12A2 formed nanotubes with a uniform 123 nm diameter, while SL16 assembled into vesicles. These results showed that LxxxLxxxL is a necessary and sufficient sequence for the self-assembly of nanotubes. Furthermore, we fabricated a double-layer nanotube by combining two kinds of nanotubes with 80 and 120 nm diameters—SL12 and SA2L12A2. When SA2L12A2 self-assembled in SL12 nanotube dispersion, SA2L12A2 initially formed a rolled sheet, the sheet then wrapped the SL12 nanotube, and a double-layer nanotube was obtained.


Author(s):  
Feng Zhang ◽  
Arif S Malik

Abstract Industrial measurements of the diameter profiles of work-rolls used in cold sheet rolling are applied with a stochastic roll-stack model to better understand how residual error from the roll grinding process affects the rolled sheet flatness quality. Roll diameter measurements taken via a non-contact, optical device on new, warm, and worn work-rolls show that the diameter deviations vary along the roll lengths, across roll samples, and at different operational states, suggesting a multi-dimensional random field problem. Studies are conducted for a 4-high rolling mill with 301 stainless steel sheet to investigate the reliability in achieving target flatness considering the work-roll diameter random field. Also investigated is the sensitivity of the flatness reliability to roll diameter deviations at different locations along the roll lengths, and for the three operational states (newly machined, warm, and worn following several passes). The results lead to several key findings. Foremost, it is shown that an assumption of statistical independence among the residual grinding errors at different roll axis locations is improper. Further, it is demonstrated that, for the measured grinding error correlation patterns, the roll diameter deviations external to the roll/sheet contact region play an important role in contributing to flatness defects within the sheet, and that these influences vary according to the roll operational state (new, warm, worn). The presented stochastic model and applied measurement data thus provide for a new understanding into how roll grinding performance influences dimensional quality in the sheet rolling process.


2021 ◽  
Vol 5 (6 (113)) ◽  
pp. 73-78
Author(s):  
Vadym Kovalenko ◽  
Valerii Kotok

Tripolyphosphate conversion coatings are promising due to the active type of anti-corrosion protection. However, to be introduced into production, it is necessary to optimize the technology of tripolyphosphate coating deposition. Coatings were deposited to samples of st05kp cold-rolled sheet steel (analogs G10050, G10060, 1CR, 2CR, D6-2, DG-2) from aqueous solutions of sodium tripolyphosphate (4 %, 6 %, 10 %, 12 %, 14 %) at t=80 °C by dip coating and sputtering. The specific weight and morphology of the coating were determined. The corrosion-protective capability was studied in the G-4 climatic chamber at 90 °C and 100 % humidity using Akimov's test. The prospects of the dip coating and sputtering methods were shown. It was revealed that in the dip coating method, the specific weight of the coating was 1–4 g/m2 and increased linearly at a rate of 0.3–0.35 g/m2 by 1 % (wt.) Na5P3O10. For the sputtering coating method, it was revealed that at 4–8 % Na5P3O10, the growth rate of the specific weight was 0.2 g/m2 by 1 % Na5P3O10 and the specific weight exceeded that of the coating obtained by the dip coating method, due to accelerated oxygen access and increased coating formation rate. At 10–14 % Na5P3O10, the growth rate of the specific weight was 0.55–0.65 g/m2 by 1 % Na5P3O10. However, the specific weight was lower than that of the coating obtained by the dip coating method, due to the self-compaction of the iron tripolyphosphate matrix and decreased mass of the Na5P3O10 filler. Using accelerated corrosion testing methods, the optimum Na5P3O10 concentration to obtain a coating with the highest corrosion-protective capability was 6 %–10 % (wt.). The correlation of the protective capability of the coating samples with the coating defects and cracks was revealed


Author(s):  
Xiaolong Bai ◽  
Andrew Kustas ◽  
James B. Mann ◽  
Srinivasan Chandrasekar ◽  
Kevin P Trumble

Abstract Shear-based deformation processing by hybrid cutting-extrusion and free machining are used to make continuous strip, of thickness up to one millimeter, from low-workability AA6013-T6 in a single deformation step. The intense shear can impose effective strains as large as 2 in the strip without pre-heating of the workpiece. The creation of strip in a single step is facilitated by three factors inherent to the cutting deformation zone: highly confined shear deformation, in situ plastic deformation-induced heating and high hydrostatic pressure. The hybrid cutting-extrusion, which employs a second die located across from the primary cutting tool to constrain the chip geometry, is found to produce strip with smooth surfaces (Sa &lt; 0.4 μm) that is similar to cold-rolled strip. The strips show an elongated grain microstructure that is inclined to the strip surfaces – a shear texture – that is quite different from rolled sheet. This shear texture (inclination) angle is determined by the deformation path. Through control of the deformation parameters such as strain and temperature, a range of microstructures and strengths could be achieved in the strip. When the cutting-based deformation was done at room temperature, without workpiece pre-heating, the starting T6 material was further strengthened by as much as 30% in a single step. In elevated-temperature cutting-extrusion, dynamic recrystallization was observed, resulting in a refined grain size in the strip. Implications for deformation processing of age-hardenable Al alloys into sheet form, and microstructure control therein, are discussed.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1429
Author(s):  
Shanghua Cheng ◽  
Fangjie Cheng ◽  
Lidong Li ◽  
Fangliang Li ◽  
Zhujing Shao ◽  
...  

Ferrite number (FN) is a crucial parameter for austenite steel-welding products, since it has a specific relationship with crack sensitivity and other important properties. In this paper, artificial neural network (ANN) models were built to predict FN, based on the GTAW tests of 304L plates produced by two different steelworks, Dongfang Special Steel hot-rolled sheet (DFSS) and Anshan Iron and Steel cold-rolled sheet (ASIS). The results show that a high performance, of more than 98% accuracy, can be achieved when the models of DFSS and ASIS are modeled separately, and that accuracy is also above 96% when an integrated model is built. The influences of nitrogen content and multiwelding parameters, such as travel speed, wire-feed rate, welding current and arc length, on FN are also analyzed through the FN-prediction model for DFSS. The results show that FN increases monotonously with the increase of nitrogen content, but the influences of either of the other two parameters on FN are nonlinear.


Sign in / Sign up

Export Citation Format

Share Document