Seismic response and energy dissipation in partially restrained and fully restrained steel frames: An analytical study

2001 ◽  
Vol 1 (4) ◽  
pp. 459-480 ◽  
Author(s):  
Alfredo Reyes-Salazar ◽  
Achintya Haldar
2020 ◽  
Vol 10 (5) ◽  
pp. 1819
Author(s):  
Pei Chi ◽  
Jun Dong ◽  
Wenlong Tian ◽  
Dafu Cao

The self-centering tension-only brace (SC-TOB) is a new and innovative bracing system that provides both a flag-shaped recentering hysteresis and load mitigation to structures. This paper presents an extensive investigation of the nonlinear seismic response of multistory steel frames built with SC-TOBs to internal force, drift, and energy dissipation. Pushover analysis subjected to two lateral load distributions and nonlinear dynamic analysis under ground motion ensembles corresponding to four hazard levels were conducted. The SC-TOBs can be designed to serve as conventional tension-only braces (TOBs) only providing lateral stiffness during minor earthquakes, to function with energy dissipation as intensity increases, and to fully recenter a structure even after severe earthquakes. The findings show that with an increase in the earthquake intensity, both the force response and drift response of the SC-TOB frames (SC-TOBFs) increased; however, the force distribution and drift distribution shapes of the SC-TOBFs remained almost constant. The SC-TOBFs generally experienced more energy dissipation in the lower parts of the building, while the upper stories dissipated almost no energy under certain load conditions, suggesting that the bracings on those stories could be replaced by conventional TOBs for economy. It is demonstrated that the SC-TOBs have immense potential to effectively improve seismic resilience to structures such that rehabilitation costs and operational disruptions after earthquakes are minimized.


2021 ◽  
pp. 136943322110073
Author(s):  
Xiaoming Zhang ◽  
Danni Ren ◽  
Xin Liu ◽  
Sujun Guan ◽  
Xindi Yu ◽  
...  

To improve the mechanical performances of joints in prefabricated construction, a type of connection structure with long-fiber and metal laminated bolts (referred to as a fiber-metal connector) is proposed and investigated by simulation and theoretical methods. The results include the following: (1) The fiber layer in bolts can form a second stiffness during rotation. This mechanical characteristic improves the bearing capacities and energy dissipation ability of the connector relative to the conventional metal connector, which are expected to effectively limit the elastoplastic rotational displacement of a structure. (2) For the reason, the fiber layer can bear load in the plastic phase due to its high-strength characteristic in the length direction. (3) A bilinear model for the bearing curve of the fiber-metal connector is proposed, and equations for optimization of fiber layer thickness are obtained with a target on bearing capacity and energy dissipation ability which are approximately higher 30% and 13% than that of the conventional metal connector, respectively. This research is expected to provide a theoretical basis for the application of this fiber-metal connector in engineering and improve the safety of prefabricated structures.


2012 ◽  
Vol 594-597 ◽  
pp. 886-890 ◽  
Author(s):  
Gan Hong ◽  
Mei Li ◽  
Yi Zhen Yang

Abstract. In the paper, take full account of energy dissipation operating characteristics. Interlayer shear-frame structure for the analysis of the Wilson-Θmethod ELASTOPLASTIC schedule, the design of a nonlinear dynamic time history analysis procedure. On this basis, taking into account the restoring force characteristics of the energy dissipation system, the inflection point in the restoring force model treatment, to avoid a result of the calculation results of distortion due to the iterative error. A frame structure seismic response time history analysis results show that: the framework of the energy dissipation significantly lower than the seismic response of the common framework, and its role in the earthquake when more significant.


2001 ◽  
Vol 23 (11) ◽  
pp. 1410-1417 ◽  
Author(s):  
Shuji Sakurai ◽  
Bruce R. Ellingwood ◽  
Shigeru Kushiyama

Sign in / Sign up

Export Citation Format

Share Document