length direction
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 27)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tao Li ◽  
Yanqing He ◽  
Guokun Liu ◽  
Binru Li ◽  
Rui Hou

Expansive soil is characterized by its unique structural morphology and drastic volume change. With infrastructure increasingly constructed in expansive soil areas, engineering problems caused by the properties of expansive soils have attracted more attention. Cyclic wetting-drying and shear testing were accordingly conducted on an expansive soil from Chengdu area in China. Crack development and shear strength change were analyzed using the Mohr–Coulomb equation for shear strength by fitting the experimental data. The results show the following: (1) With the increase in wetting-drying cycles, the crack ratio increases, the shear strength decreases, and the shear strength parameters gradually decrease at the same rate of change. The applied vertical load reduces the weakening effect of the wetting-drying cycles on the soil structure and strength by restraining the expansion and contraction deformation. (2) By analyzing the number of wetting-drying cycles and the crack images, the crack development (length, direction, etc.) of the expansive soil can be predicted and described. (3) There is a specific linear correlation between the crack ratio and strength that approached a limit value with ongoing wetting-drying cycles. The strength of the expansive soil can therefore be obtained based on crack development, improving the ability of designers to account for the behaviour of expansive soils.


2021 ◽  
Vol 13 (2) ◽  
pp. 124-129
Author(s):  
Sergiu Spinu ◽  
◽  

The line-contact is a particular type of contact with a contact length much greater than its width. Such contact scenarios can be treated in the frame of a two-dimensional plane-strain problem if the contacting surfaces can be considered nominally smooth. However, surface irregularities inherent to any manufacturing technique lead to a discontinuous contact area that differs from the one derived on the basis of the smooth profile assumption. It is therefore tantalizing to pursue the solution of a line-contact problem using an intrinsically three-dimensional (3D) model, which can only be numerical due to lack of general analytical solutions in contact mechanics. Considering the geometry of the line-contact, a major challenge in its numerical modelling is that the expected contact area is orders of magnitude larger in one direction compared to the other. This may lead to an unreasonably large number of grids in the contact length direction, which translates to a prohibitive computational burden. An alternative approach, employed in this paper, is to treat the line-contact as non-periodic in the contact width direction, but periodic in the contact length direction, with a period equal to the window required to capture and replicate the surface specific texture. This periodicity encourages the contact problem solution by spectral methods based on the fast Fourier transform (FFT) algorithm. Based on this idea, two methods are derived in this paper from the existing Discrete Convolution Fast Fourier Transform (DCFFT) technique, which was previously developed for purely non-periodic contact problems. A first algorithm variant employs a special padding technique for pressure, whereas a second one mimics the contribution of multiple pressure periods by summation of the influence coefficients over a domain a few times larger than the target domain. Both techniques are validated against the existing analytical Hertz solution for the line-contact and a good agreement is found. The advanced methods seem well adapted to the simulation of contact problems that can be approximated as periodic in one direction and non-periodic in the other.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jihun Choi ◽  
Hansol Lee ◽  
Bokyeong Sohn ◽  
Minjae Song ◽  
Sangmin Jeon

AbstractWe developed a 3D solar steam generator with the highest evaporation rate reported so far using a carbonized luffa sponge (CLS). The luffa sponge consisted of entangled fibers with a hierarchically porous structure; macropores between fibers, micro-sized pores in the fiber-thickness direction, and microchannels in the fiber-length direction. This structure remained after carbonization and played an important role in water transport. When the CLS was placed in the water, the microchannels in the fiber-length direction transported water to the top surface of the CLS by capillary action, and the micro-sized pores in the fiber-thickness direction delivered water to the entire fiber surface. The water evaporation rate under 1-sun illumination was 3.7 kg/m2/h, which increased to 14.5 kg/m2/h under 2 m/s wind that corresponded to the highest evaporation rate ever reported under the same condition. The high evaporation performance of the CLS was attributed to its hierarchically porous structure. In addition, it was found that the air temperature dropped by 3.6 °C when the wind passed through the CLS because of the absorption of the latent heat of vaporization. The heat absorbed by the CLS during water evaporation was calculated to be 9.7 kW/m2 under 1-sun illumination and 2 m/s wind, which was 10 times higher than the solar energy irradiated on the same area (1 kW/m2).


2021 ◽  
Vol 34 (2) ◽  
pp. 7-15
Author(s):  
Jingxi He ◽  
Yuqiao Cen ◽  
Yuanyuan Li ◽  
Seungbae Park ◽  
Daehan Won

Motivation: As passive components’ size gets smaller, quality rejects due to overhang and misalignment after the reflow appear more frequently. This situation is partly because the pass-fail criterion is set based on the offset concerning the component dimensions. Therefore, understanding the self-alignment characteristics of electronic components becomes very critical for surface-mount assembly yield. This research investigates the dissimilarity of self-alignment in the length and width directions. Approach: To avoid the argument of sample to sample variations, data are collected from 81 printed circuit boards (PCB) and 182,250 assembled components. Within a PCB, 25 different solder paste printing offset locations and 81 component placement offset settings are implemented. Component-placement positions before and after the reflow are monitored. The results are compared to identify different component sizes’ self-alignment characteristics in the length and width directions. Key findings: The misalignment of smaller passive components, e.g., R0402M(0.40 mm × 0.20 mm), is worse than the larger component under the identical solder paste printing and component placement conditions. Furthermore, the self-alignment characteristic in the length direction of these passive components, e.g., R0402M, to R1005M (1.00 mm × 0.50 mm) is superior to that of width direction. The observations are not consistent with the results found in earlier research that reported on larger components, e.g., C0402M(0.40 mm × 0.20 mm), to C3216M(3.20 mm × 1.50 mm).


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 50
Author(s):  
Robert Szymko ◽  
Mateusz Denys ◽  
Tomasz Bulik ◽  
Bartosz Idźkowski ◽  
Adam Kutynia ◽  
...  

Mixed spatio–temporal spectral analysis was applied for the detection of seismic waves passing through the west–end building of the Virgo interferometer. The method enables detection of a passing wave, including its frequency, length, direction, and amplitude. A thorough analysis aimed at improving sensitivity of the Virgo detector was made for the data gathered by 38 seismic sensors, in the two–week measurement period, from 24 January to 6 February 2018, and for frequency range 5–20 Hz. Two dominant seismic–wave frequencies were found: 5.5 Hz and 17.1 Hz. The presented method can be applied for a better understanding of the interferometer seismic environment, and by identifying noise sources, help the noise–hunting and mitigation work that eventually leads to interferometer noise suppression.


2021 ◽  
pp. 136943322110073
Author(s):  
Xiaoming Zhang ◽  
Danni Ren ◽  
Xin Liu ◽  
Sujun Guan ◽  
Xindi Yu ◽  
...  

To improve the mechanical performances of joints in prefabricated construction, a type of connection structure with long-fiber and metal laminated bolts (referred to as a fiber-metal connector) is proposed and investigated by simulation and theoretical methods. The results include the following: (1) The fiber layer in bolts can form a second stiffness during rotation. This mechanical characteristic improves the bearing capacities and energy dissipation ability of the connector relative to the conventional metal connector, which are expected to effectively limit the elastoplastic rotational displacement of a structure. (2) For the reason, the fiber layer can bear load in the plastic phase due to its high-strength characteristic in the length direction. (3) A bilinear model for the bearing curve of the fiber-metal connector is proposed, and equations for optimization of fiber layer thickness are obtained with a target on bearing capacity and energy dissipation ability which are approximately higher 30% and 13% than that of the conventional metal connector, respectively. This research is expected to provide a theoretical basis for the application of this fiber-metal connector in engineering and improve the safety of prefabricated structures.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1144
Author(s):  
Mohamed M. Z. Ahmed ◽  
Bandar Alzahrani ◽  
Nabil Jouini ◽  
Mahmoud M. Hessien ◽  
Sabbah Ataya

This work evaluates the mechanical properties of the glass fiber reinforced polymer (GFRP) material taken from an out of service 100 KW power wind turbine blade which has been in service life of 20 years old. Investigated samples were taken from two positions of undamaged regions at 1.6 m and 5.4 m from the rotor hub, respectively. Microstructure investigation and lay-up analysis were carried out. Fiber weight fraction of the investigated samples was ranging between 0.55–0.60. Tensile and compression tests were carried out at the temperature range from −10 °C to +50 °C on specimens which were machined so as to be loaded in the blade length direction LD, transverse to the blade length TD and off axis; 45° to the blade length. Tensile elastic modulus of the investigated GFRP was determined in the three direction tested. The number of fiber fabric layers found to be decreasing along the blade length away from the root and the density of the fibers along the length is the highest (858 gm/mm2) and in the transverse direction is the lowest (83 gm/mm2). The microstructure of the GFRP composite showed good wetting for the fiber by the polymer with some features of lack of penetration at the high density fiber bundles and some production porosity in the matrix. The tensile Properties at room temperature (RT) and high temperature are almost similar with the highest properties for the samples aligned with the blade length. The compressive strength is highest at the transverse direction samples and lowest at the blade length direction and decreasing with the increase of the test temperature. The bending properties are significantly affected by the fiber orientation with the highest properties for samples aligned with the blade length and the lowest for the samples with the transverse direction.


2020 ◽  
Author(s):  
Baogui Yang ◽  
haigang yang ◽  
Xiaofeng Lu

Abstract Scientific mining is based on breaking regularity of roof above underground working face in coal mine. In order to explore the primary breaking pattern of main roof above the first working face, on account of theory of thin elastic plate, development of the breaking in each region of main roof is analyzed and the breaking sequence of each region is explored in virtue of main bending moment taken as the breaking parameter. The results indicate that the first broken point of main roof is midpoint of the long side. The breaking, which occurs on the top surface of main roof, is caused by the second main bending moment. The fracture in long side region starts from midpoint of the long side and develops along the length direction of the working face. The fracture in middle region starts from the center of main roof and develops along the length direction of the working face. The fracture in short side region starts from midpoint of the short side and develops along advance direction of the working face. There always is an extreme value order of control moment in each region, Mc > Mz > Md, when a single parameter is within a reasonable range. Due to this, the breaking sequence is the long side region, the middle region and the short side region although they end up with the same breaking pattern O-X. Mc, Mz and Md depend on the advance distance of working face and increase linearly with transverse loading. Besides, the short side of main roof becomes stable with the increase of the length of working face. Revealing the primary breaking pattern of main roof above the first working face contributes to learning breaking behavior of main roof and providing theoretical support for design of the working face and roof management.


Author(s):  
Huacui Wang ◽  
Xudong Duan ◽  
Binghe Liu

Abstract Pouch type lithium-ion battery (LIB) has now been widely used in electric vehicles, smartphones, computers and et al. Mechanical abuse is one of the main reasons to cause the safety issues for lithium-ion battery. The highly accurate and efficient computational model is helpful for the safety design, application and analysis of LIB. The previous homogenized mechanical models of the pouch LIB use different material parameters for various loading conditions. Herein, we establish an anisotropic homogenized method to predict the mechanical behavior in in-plane and out-of-plane directions simultaneously. Engineering constants and Hill's 48 criteria are used for the anisotropic properties, and bilinear plastic model is used as the hardening curve under large deformation. Based on this method, we established two homogenized models i.e. one-layer model and multi-layer model. Experiments in various loading conditions including 3-point bending (length direction and width direction), out-of-plane compression, and in-plane compression (length direction and width direction) are conducted for parameters calibration. The calibration methods are then discussed and confirmed through these experiments. The computational models show good correlation with experiments both in in-plane and out-of-plane directions. The difference is that the global buckling behavior can be predicted by both of the two models, while the local buckling can only be predicted by the multi-layer model. The results may shield light on the safety design, application and analysis for pouch LIB.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Liu ◽  
Xiaoreng Feng ◽  
Yang Xiao ◽  
Jie Xiang ◽  
Keyu Chen ◽  
...  

Abstract Background Recently, the infra-acetabular screw has been proposed for use in treatment of acetabular fractures as a part of a periacetabular fixation frame. Biomechanical studies have shown that an additional infra-acetabular screw placement can enhance the fixation strength of acetabular fracture internal fixation. Currently, the reported exit point of the infra-acetabular screw has been located at the ischial tuberosity (Screw I). However, our significant experience in placement of the infra-acetabular screw has suggested that when the exit point is located between the ischial tuberosity and the ischial spine (Screw II), the placement of a 3.5 mm infra-acetabular screw may be easier for some patients. We conducted this study in order to determine the anatomical differences between the two different IACs. Methods The raw datasets were reconstructed into 3D models using the software MIMICS. Then, the models, in the STL format model, were imported into the software Geomagic Studio to delete the inner triangular patches. Additionally, the STL format image processed by Geomagic Studio was imported again into MIMICS. Finally, we used an axial perspective based on 3D models in order to study the anatomical parameters of the two infra-acetabular screw corridors with different exit points. Hence, we placed the largest diameter virtual screw in the two different screw corridors. The data obtained from this study presents the maximum diameter, length, direction, and distances between the entry point and center of IPE. Results In 65.31% males and 40.54% females, we found a screw I corridor with a diameter of at least 5 mm, while a screw II corridor was present in 77.55% in males and 62.16% in females. Compared to screw I, the length of screw II is reduced, the angle with the coronal plane is significantly reduced, and the angle with the transverse plane is significantly increased. Conclusions For East Asians, changing the exit point of the infra-acetabular screw can increase the scope of infra-acetabular screw use, especially for females.


Sign in / Sign up

Export Citation Format

Share Document