Experimental investigation of force-distribution in high-strength bolts in extended end-plate connections

2007 ◽  
Vol 7 (2) ◽  
pp. 87-103 ◽  
Author(s):  
K.M. Abdalla ◽  
G.A.R. Abu-Farsakh ◽  
S.A. Barakat
2011 ◽  
Vol 6 (3) ◽  
pp. 17-32 ◽  
Author(s):  
Dimitrios Kaziolas ◽  
Khairedin Abdalla ◽  
Charalambos Baniotopoulos

1996 ◽  
Vol 23 (1) ◽  
pp. 277-286 ◽  
Author(s):  
S. Mourad ◽  
R. M. Korol ◽  
A. Ghobarah

Extended end-plate connections have been widely used in moment-resisting steel frames with W-shape columns, due to their sufficient stiffness and moment capacity. In addition, such connections are easy to install and permit good quality control. Extended end-plate connections can also be employed in moment-resisting frames with hollow structural section columns by using high strength blind bolts. These bolts have been developed for installation from one side only where the rear side of the connection is inaccessible. In this study, a quantitative procedure for detailing and designing beam extended end-plate connections for rectangular hollow structural section columns using high strength blind bolts is proposed. The design procedure is consistent with the design philosophy given in limit-state codes. The proposed design is based on the results obtained from an experimental program and an analytical study. Key words: design, end plate, connection, hollow section, blind bolts, steel, frame.


2012 ◽  
Vol 193-194 ◽  
pp. 1405-1413 ◽  
Author(s):  
Zhu Ling Yan ◽  
Bao Long Cui ◽  
Ke Zhang

This paper conducts analysis on beam-column extended end-plate semi-rigid connection joint concerning monotonic loading and cyclic loading of finite element through ANSYS program, mainly discussed the influence of parameters such as the form of end plate stiffening rib on anti-seismic performance of joint.


2018 ◽  
Vol 763 ◽  
pp. 818-825 ◽  
Author(s):  
Roberto Tartaglia ◽  
Mario D'Aniello ◽  
Gian Andrea Rassati ◽  
James A. Swanson ◽  
Raffaele Landolfo

Extended stiffened end-plate connections are widely used in seismic area due to their good performance in terms of both resistance and ductility. The most of existing studies focused on the all-steel behavior of these joints, disregarding the composite action of the concrete slab that is generally disconnected. However, the presence of the concrete slab can have beneficial effects on the structural stiffness for both gravity and lateral loads. Hence, most of the building frames are usually designed considering steel-concrete composite solution. However, the slab can strongly influence the hierarchy between beam and column and the ductility of the joint. In this paper the influence of composite deck on the response of extended stiffened end-plate joins has been investigated by means of finite element analyses (FEAs). In particular, the following details have been investigated: (i) all steel joints without slab; (ii) steel joint with disconnected slab; (iii) composite joint.


2014 ◽  
Vol 1025-1026 ◽  
pp. 878-884
Author(s):  
Jong Wan Hu ◽  
Jun Hyuk Ahn

This paper is principally performed to survey end-plate connection are described in the next part based on ideal limit states. The determination of end-plate based on the full plastic strength of the steel beam in accordance with 2001 AISC-LRFD manual and AISC/ANSI 358-05 Specifications. The bolted connections considered herein were performed to include the end-plate component of moment connections. This study is intended to investigate economic design for end-plate connections. In addition, the proposed end-plate model is evaluated by comparing the required factored bolt strength. The end-plates using 8 high strength bolts with wider gages demonstrated this design. The equations belonging to the step-by-step design procedure are described based on complete proving of design. Finally, new design methodology is applied to end-plate connections suggested in this study.


Author(s):  
Orkun Yılmaz ◽  
Serkan Bekiroğlu ◽  
Fatih Alemdar ◽  
Güray Arslan ◽  
Barış Sevim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document