Numerical and experimental investigation of the behavior of extended end-plate connections in steel structures

2011 ◽  
Vol 6 (3) ◽  
pp. 17-32 ◽  
Author(s):  
Dimitrios Kaziolas ◽  
Khairedin Abdalla ◽  
Charalambos Baniotopoulos
Vestnik MGSU ◽  
2019 ◽  
pp. 179-187
Author(s):  
Ruslan I. Bagautdinov ◽  
Zaur S. Daurov ◽  
Yuriy P. Komarov ◽  
Nikolaiy N. Mostovskiy

Introduction. One of the greatest accents in the steel structures researches is the optimization of the design model. It is possible to reduce the cost of steel structures, optimize moment distribution and dynamic characteristics of the frame using the finite secant stiffness, which can be obtained by the described in the paper numerical modeling method. There are a lot of perspectives for the engineer in the field of numerical modeling. Most of them are possible to implement in the design procedure nowadays, but it is important to develop methods and standards for numerical modeling, in order to obtain convenient tools and reliable results. In order to study this issue in more depth, the “moment - turn” curve was studied, maximum stress values were determined, and rigidity and strength characteristics were prepared for each type of joint for structural analysis. Materials and methods. In the program Ansys was modelling three types of steel joints: end-plate connections, double web-angle connections and top and seat angle connections. Results. For three types of joints was obtained ultimate moment, location of destruction and moment-rotation curve. For extended end-plate connections was comparison of the obtained curve with experimental data. Conclusions. Three types of steel joints were modeled in the paper. The numerical modeling results show good correlation with the experimental ones. The data about the behavior of the joints were extracted and analyzed. As result, “moment-angle of rotation” curves were obtained. Finite secant stiffness of the joints for considering steel structures was obtained in the analysis. The resulting finite secant stiffness can be used in the steel frames design procedure.


2012 ◽  
Vol 193-194 ◽  
pp. 1405-1413 ◽  
Author(s):  
Zhu Ling Yan ◽  
Bao Long Cui ◽  
Ke Zhang

This paper conducts analysis on beam-column extended end-plate semi-rigid connection joint concerning monotonic loading and cyclic loading of finite element through ANSYS program, mainly discussed the influence of parameters such as the form of end plate stiffening rib on anti-seismic performance of joint.


2018 ◽  
Vol 763 ◽  
pp. 818-825 ◽  
Author(s):  
Roberto Tartaglia ◽  
Mario D'Aniello ◽  
Gian Andrea Rassati ◽  
James A. Swanson ◽  
Raffaele Landolfo

Extended stiffened end-plate connections are widely used in seismic area due to their good performance in terms of both resistance and ductility. The most of existing studies focused on the all-steel behavior of these joints, disregarding the composite action of the concrete slab that is generally disconnected. However, the presence of the concrete slab can have beneficial effects on the structural stiffness for both gravity and lateral loads. Hence, most of the building frames are usually designed considering steel-concrete composite solution. However, the slab can strongly influence the hierarchy between beam and column and the ductility of the joint. In this paper the influence of composite deck on the response of extended stiffened end-plate joins has been investigated by means of finite element analyses (FEAs). In particular, the following details have been investigated: (i) all steel joints without slab; (ii) steel joint with disconnected slab; (iii) composite joint.


Author(s):  
Orkun Yılmaz ◽  
Serkan Bekiroğlu ◽  
Fatih Alemdar ◽  
Güray Arslan ◽  
Barış Sevim ◽  
...  

2004 ◽  
Vol 26 (9) ◽  
pp. 1185-1206 ◽  
Author(s):  
Ana M. Girão Coelho ◽  
Frans S.K. Bijlaard ◽  
Luís Simões da Silva

Sign in / Sign up

Export Citation Format

Share Document