Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory

2012 ◽  
Vol 13 (1) ◽  
pp. 91-107 ◽  
Author(s):  
A. Fekrar ◽  
N. El Meiche ◽  
A. Bessaim ◽  
A. Tounsi ◽  
E.A. Adda Bedia
2011 ◽  
Vol 14 (1) ◽  
pp. 5-33 ◽  
Author(s):  
Mohamed Bourada ◽  
Abdelouahed Tounsi ◽  
Mohammed Sid Ahmed Houari ◽  
El Abbes Adda Bedia

2022 ◽  
Vol 28 (1) ◽  
pp. 86-107
Author(s):  
Hussein A. Hashim ◽  
Ibtehal Abbas Sadiq

This research is devoted to investigating the thermal buckling analysis behaviour of laminated composite plates subjected to uniform and non-uniform temperature fields by applying an analytical model based on a refined plate theory (RPT) with five unknown independent variables. The theory accounts for the parabolic distribution of the transverse shear strains through the plate thickness and satisfies the zero-traction boundary condition on the surface without using shear correction factors; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by using the virtual work principle and solved via Navier-type analytical procedure to obtain critical buckling temperature. Results are presented for: uniform and linear cross-ply lamination with symmetry and antisymmetric stacking, simply supported boundary condition, different aspect ratio (a/b), various orthogonality ratio (E1/E2), varying ratios of coefficient of uniform and linear thermal expansion (α2⁄α1), uniform and linearly varying temperature thickness ratio (a/h) and numbers of layers on thermal buckling of the laminated plate. It can be concluded that this theory gives good results compared to other theories.


Author(s):  
Huu-Tai Thai ◽  
Brian Uy

This article presents analytical solutions for buckling analysis of functionally graded plate based on a refined plate theory. Based on the refined shear deformation theory, the position of neutral surface is determined and the governing stability equations based on neutral surface are derived. There is no stretching–bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The closed-form solutions of buckling load are obtained for rectangular plates with various boundary conditions. The accuracy of neutral surface-based model is verified by comparing the obtained results with those reported in the literature. Finally, parameter studies are carried out to study the effects of power law index, thickness ratio, and aspect ratio on the critical buckling load of functionally graded plates.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3675 ◽  
Author(s):  
Tran Huu Quoc ◽  
Tran Minh Tu ◽  
Vu Van Tham

This paper presents a new four-variable refined plate theory for free vibration analysis of laminated piezoelectric functionally graded carbon nanotube-reinforced composite plates (PFG-CNTRC). The present theory includes a parabolic distribution of transverse shear strain through the thickness and satisfies zero traction boundary conditions at both free surfaces of the plates. Thus, no shear correction factor is required. The distribution of carbon nanotubes across the thickness of each FG-CNT layer can be functionally graded or uniformly distributed. Additionally, the electric potential in piezoelectric layers is assumed to be quadratically distributed across the thickness. Equations of motion for PFG-CNTRC rectangular plates are derived using both Maxwell’s equation and Hamilton’s principle. Using the Navier technique, natural frequencies of the simply supported hybrid plate with closed circuit and open circuit of electrical boundary conditions are calculated. New parametric studies regarding the effect of the volume fraction, the CNTs distribution, the number of layers, CNT fiber orientation and thickness of the piezoelectric layer on the free vibration response of hybrid plates are performed.


2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 389 ◽  
Author(s):  
Yanqing Wang ◽  
Zhiyuan Zhang

In this study, the buckling of functionally graded (FG) nanoporous metal foam nanoplates is investigated by combining the refined plate theory with the non-local elasticity theory. The refined plate theory takes into account transverse shear strains which vary quadratically through the thickness without considering the shear correction factor. Based on Eringen’s non-local differential constitutive relations, the equations of motion are derived from Hamilton’s principle. The analytical solutions for the buckling of FG nanoporous metal foam nanoplates are obtained via Navier’s method. Moreover, the effects of porosity distributions, porosity coefficient, small scale parameter, axial compression ratio, mode number, aspect ratio and length-to-thickness ratio on the buckling loads are discussed. In order to verify the validity of present analysis, the analytical results have been compared with other previous studies.


Sign in / Sign up

Export Citation Format

Share Document