Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads

2013 ◽  
Vol 14 (5) ◽  
pp. 453-472 ◽  
Author(s):  
Jai Woo Park ◽  
Sung Mo Choi
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Wenjing Wang ◽  
Zhenyun Tang ◽  
Zhenbao Li ◽  
Hua Ma

The bearing capacities of concrete-filled steel tubes are normally derived through experiments with small-scale specimens, but it is uncertain whether such derivations are appropriate for the much larger components used in practical engineering. This study therefore investigates the effect of different diameters (219, 426, 630, and 820 mm) on the axial compression of short concrete columns in steel (Q235) tubes. It is found that the peak nominal stress decreases with increasing specimen size and that the axial bearing capacity is determined by three separate components: the cylinder compressive strength of the concrete, the improvement in strength due to the confining effect of the steel tube, and the longitudinal strength of the steel tube. At peak load, increases in the specimen diameter reduce the hoop stresses in the steel tube, thereby reducing the strengthening effect of confinement. Vertical stress in the steel tube is increased with diameter; therefore, the axial bearing capacity of the steel tube is directly related to the specimen size. Size effect coefficients for these three aspects of bearing capacity are defined and used to develop a size-dependent model for predicting the axial bearing capacity of large, concrete-filled steel tubes. The model is then validated against experimental data.


Author(s):  
Robert Kroyer ◽  
Andreas Taras

<p>The popularity of composite sections increased notably in recent years due to the possibility to combine materials with individual mechanical properties beneficial for structural applications. Focusing on concrete- filled steel tubes, such members exhibit primarily an increased ultimate strength as well as a higher ductility in comparison to similar members with a homogeneous cross section made from either steel or concrete. Research issues on the structural behavior of such composite members include the interaction of the materials as well as the mechanical behavior and stochastic characteristics of the individual materials. As the materials are subjected typically to a multiaxial stress state, modelling of the material behavior is still a challenging issue in those applications. In particular for concrete, different material models were proposed in previous research for simulation of the actual behavior. This paper reports on characteristics of the structural behavior of concrete-filled steel tubes as well as on a plasticity material model for numerical simulations of this behavior. Some common approaches in application of this material model are collected and discussed, followed by an exemplary numerical application on concrete-filled steel tube specimens for the purpose of benchmarking.</p>


2020 ◽  
pp. 136943322097478
Author(s):  
Song Li ◽  
Chu-Jie Jiao

Reactive powder concrete-filled steel tubes (RPCFSTs) have become an important research target in recent years. In engineering applications, RPCFSTs can provide superior vertical components for high-rise and tower buildings, thereby enabling developers to provide more floor space. However, this type of composite structure is prone to inelastic outward local buckling. The use of carbon fiber reinforced polymer (CFRP) wrapping to suppress such local buckling has shown great potential in limited test results. This paper presents experimental results concerning the axial compression of CFRP-confined reactive powder concrete-filled circular steel tubes (CF-RPCFSTs). We included 18 specimens in our experimental investigation, varying the number of CFRP layers, steel tube thickness, and RPC strength. According to our test results, CF-RPCFSTs exhibit compression shear failure and drum-shaped failure. The CFRP wrap can effectively enhance bearing capacity and postpone local buckling of the steel tube. In addition, three-layer CFRP-confined RPC-filled thin-wall steel tubes are suitable for engineering. We also propose a model to calculate the bearing capacity of CF-RPCFSTs. Compared to the existing model of CFRP-confined concrete-filled steel tubes, the results obtained using the proposed model are in good agreement with our experimental results.


Sign in / Sign up

Export Citation Format

Share Document