Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux

2015 ◽  
Vol 18 (4) ◽  
pp. 909-924 ◽  
Author(s):  
Ashraf M. Zenkour ◽  
Ahmed E. Abouelregal
Meccanica ◽  
2015 ◽  
Vol 51 (1) ◽  
pp. 139-154 ◽  
Author(s):  
J. N. Sharma ◽  
P. K. Sharma ◽  
Krishna C. Mishra

1980 ◽  
Vol 23 (8) ◽  
pp. 1532 ◽  
Author(s):  
H. Schamel ◽  
Ch. Sack
Keyword(s):  

2016 ◽  
Vol 08 (04) ◽  
pp. 1650054 ◽  
Author(s):  
Zeinab Mazarei ◽  
Mohammad Zamani Nejad ◽  
Amin Hadi

An exact closed-form analytical solution is presented to solve the thermo-elasto-plastic problem of thick-walled spherical vessels made of functionally graded materials (FGMs). Assuming that the inner surface is exposed to a uniform heat flux, and that the outer surface is exposed to an airstream. The heat conduction equation for the one-dimensional problem in spherical coordinates is used to obtain temperature distribution in the sphere. Material properties are graded in the thickness direction according to a power law distribution, whereas the Poisson’s ratio is kept constant. The Poisson’s ratio due to slight variations in engineering materials is assumed constant. The plastic model is based on von Mises yield criterion and its associated flow rules under the assumption of perfectly plastic material behavior. For various values of inhomogeneity constant, the so-obtained solution is then used to study the distribution of limit heat flux, displacement and stresses versus the radial direction. Moreover, the effect of increasing the heat flux and pressure on the propagation of the plastic zone are investigated. Furthermore, the effect of change in Poisson’s ratio on the value of the critical material parameter is demonstrated. The present study is also validated by comparing the numerical results for thick elasto-plastic spherical shells available in the literature. To the best of the authors’ knowledge, in previous studies, exact thermo-elasto-plastic behavior of FGM thick-walled sphrical pressure vessels has not investigated.


2005 ◽  
Vol 492-493 ◽  
pp. 379-384 ◽  
Author(s):  
Klod Kokini ◽  
Sudarshan V. Rangaraj

The thermal fracture and its dependence on time-dependent behavior in functionally graded yttria stabilized zirconia - NiCoCrAlY bond coat alloy thermal barrier coatings was studied. The response of three coating architectures of similar thermal resistance to laser thermal shock tests was considered, experimentally and computationally.


2021 ◽  
Author(s):  
Richard Blythman ◽  
Sajad Alimohammadi ◽  
Nicholas Jeffers ◽  
Darina B. Murray ◽  
Tim Persoons

Abstract While numerous applied studies have successfully demonstrated the feasibility of unsteady cooling solutions, a consensus has yet to be reached on the local instantaneous conditions that result in heat transfer enhancement. The current work aims to experimentally validate a recent analytical solution (on a local time-dependent basis) for the common flow condition of a fully-developed incompressible pulsating flow in a uniformly-heated vessel. The experimental setup is found to approximate the ideal constant heat flux boundary condition well, especially for the decoupled unsteady scenario where the amplitude of the most significant secondary contributions (capacitance and lateral conduction) amounts to 1.2% and 0.2% of the generated heat flux, respectively. Overall, the experimental measurements for temperature and heat flux oscillations are found to coincide well with a recent analytical solution to the energy equation by the authors. Furthermore, local time-dependent heat flux enhancements and degradations are observed to be qualitatively similar to those of wall shear stress from a previous study, suggesting that the thermal performance is indeed influenced by hydrodynamic behaviour.


Sign in / Sign up

Export Citation Format

Share Document