Thermo-elastoplastic characteristics of heat-resisting functionally graded composite structures

2001 ◽  
Vol 11 (1) ◽  
pp. 49-70 ◽  
Author(s):  
Jin-Rae Cho ◽  
Dae-Yul Ha
2015 ◽  
Vol 132 ◽  
pp. 393-405 ◽  
Author(s):  
Yong zhang ◽  
Minghao Lu ◽  
Guangyong Sun ◽  
Guangyao Li ◽  
Qing Li

2001 ◽  
Vol 702 ◽  
Author(s):  
Robert Lipton ◽  
Ani Velo

ABSTRACTIn this paper a methodology is introduced for the design of structural components made from composite materials for the control of stress. A numerical method is developed for designing functionally graded materials with minimum stress in prescribed sub-domains inside the structure.


2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


2018 ◽  
Vol 10 (04) ◽  
pp. 1850045 ◽  
Author(s):  
Qiang Chen ◽  
Guannan Wang ◽  
Xuefeng Chen

In order to satisfy the increasing computational demands of micromechanics, the Finite-Volume Direct Averaging Micromechanics (FVDAM) theory is developed in three-dimensional (3D) domain to simulate the multiphase heterogeneous materials whose microstructures are distributed periodically in the space. Parametric mapping, which endorses arbitrarily shaped and oriented hexahedral elements in the microstructure discretization, is employed in the unit cell solution. Unlike the finite-element (FE) technique, the expressions for local stiffness matrices are derived explicitly, enabling efficient global stiffness matrix assembly using an easily implementable algorithm. To demonstrate the accuracy and efficiency of the proposed theory, the homogenized moduli and localized stress distributions produced by the FE analyses are given for comparisons, where excellent agreement is always obtained for the 3D microstructures with different geometrical and material properties. Finally, a multi-scale stress analysis of functionally graded composite cylinders is conducted. This extension further increases the FVDAM’s range of applicability and opens new opportunities for pursuing other areas, providing an attractive alternative to the FE-based approaches that may be compared.


Sign in / Sign up

Export Citation Format

Share Document