Electromagnetic actuator design for the control of light structures

2010 ◽  
Vol 6 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Johan Der Hagopian ◽  
Jarir Mahfoud
Author(s):  
Erich Schmidt ◽  
Wolfgang Paradeiser ◽  
Fadi Dohnal ◽  
Horst Ecker

PurposeAn overview is given on design features, numerical modelling and testing of a novel electromagnetic actuator to achieve a controllable stiffness to be used as a device for parametric stiffness excitation.Design/methodology/approachIn principle, the actuator consists of a current driven coil placed between two permanent magnets. Repellent forces are generated between the coil and the magnets, centering the coil between the two magnets. The 2D finite element analyses are carried out to predict the forces generated by this arrangement depending on coil current and coil position. Force measurements are also made using the actual device.FindingsActuator forces as predicted by the finite element analyses are in excellent agreement with the measured data, confirming the validity of the numerical model. Stiffness of the actuator is defined as the increase of force per unit of coil displacement. Actuator stiffness depends linearly on the coil current but in a nonlinear manner on the coil displacement. The performance of the actuator is sufficient to demonstrate the effect of a so‐called parametric anti‐resonance on a test stand.Research limitations/implicationsAlthough the performance of the actuator is satisfactory, there is potential for further improvement of the actuator design.Originality/valueThis paper reports for the first time on an electromechanical device to create a time‐periodic stiffness variation to be used for research in the field of parametrically excited mechanical systems. The device is used to prove experimentally an effect to suppress mechanical vibrations which has been studied so far only in theoretical studies.


2019 ◽  
Vol 24 (4) ◽  
pp. 593-605
Author(s):  
Xianbing Wang ◽  
Heyun Lin ◽  
Shuhua Fang ◽  
Xiangao Wang ◽  
Jin Peng

2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Noah Kohls ◽  
Ibrahim Abdeally ◽  
Bryan P. Ruddy ◽  
Yi Chen Mazumdar

Abstract Electromagnetic actuators provide fast speed, large forces, high strokes, and wide bandwidths. Most designs, however, are constructed from rigid components, making these benefits inaccessible for many soft robotics applications. In this work, we develop a new soft electromagnetic linear actuator using liquid gallium–indium for the conductor and neodymium–iron–boron and polymer composites for the permanent magnet. When combined in a solenoid configuration, high strokes can be generated using entirely soft components. To emulate the pulsing motion of Xenia coral arms, we develop an additional soft flexure system that converts the linear translation to rotary motion. The design and fabrication of the electromagnetic actuator and compliant flexure are first described. Models for the magnetic forces and the joint kinematics are then developed and compared with the experimental results. Finally, the robot dynamics are analyzed using stochastic system identification techniques. Results show that the compliant actuator is able to achieve an 18 mm stroke, allowing the soft arms to bend up to 120 deg. This further enables the tips of the arms to traverse an arc length of 42 mm. Bandwidths up to 30 Hz were also observed. While this article focuses on emulating a biological system, this highly deformable actuator design can also be utilized for fully soft grasping or wearables applications.


2021 ◽  
pp. 107754632199822
Author(s):  
Jun Liu ◽  
Zhu Han ◽  
Rong Hu

To investigate vibration characteristics and delay crack propagations of an asymmetric cracked rotor, the 3D finite element model of the rotor system with a nonlinear contact method is established. Resonance characteristics of the asymmetrical rotor without a crack and within different locations of a crack are investigated systematically. Numerical results show that a crack affects vibration frequencies and the unstable region of the rotor. Meanwhile, an improved proportional integral differential control method with the electromagnetic actuator is used to accomplish the delay crack propagation and the vibration suppression. Based on the mapping model of opening and closing states of a crack, the effects of rotational speeds, an unbalance, and asymmetries of the rotor are discussed in detail. Experimental results show that vibrations and the breathing behavior of cracks in the rotor with the electromagnetic actuator can be suppressed, and the effectiveness of the proposed mapping model of opening and closing states of a crack is verified.


Sign in / Sign up

Export Citation Format

Share Document