cracked rotor
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 29)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 898 (1) ◽  
pp. 012017
Author(s):  
Xueyan Zhang ◽  
Guoan He

Abstract According to the vibration equation of the cracked rotor, the main vibration characteristics of the cracked rotor are summarized. On this basis, combined with the field diagnosis experience, a practical method of identifying the cracked rotor through vibration analysis is proposed. Furthermore, the proposed method is illustrated by three cases of rotor crack fault identification in the operation of steam turbine and boiler primary air fan. Successful diagnosis avoids the occurrence of potential major accidents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad A. AL-Shudeifat ◽  
Fatima K. Alhammadi

AbstractAppearance of transverse cracks in rotor systems mainly affects their stiffness content. The stability of such systems at steady-state running is usually analyzed by using the Floquet’s theory. Accordingly, the instability zones of rotational speeds are dominated by negative stiffness content in the whirl response in the vicinity of critical rotational speeds. Consequently, an effective stiffness measure is introduced here to analyze the effect of the crack and the unbalance force vector orientation on the intensity of negative potential and stiffness content in the whirl response. The effective stiffness expression is obtained from the direct integration of the equations of motion of the considered cracked rotor system. The proposed effective stiffness measure is applied for steady-state and transient operations using the Jeffcott rotor model with open and breathing crack models. The intensity of negative potential and stiffness content in the numerical and experimental whirl responses is found to be critically depending on the propagation level of the crack and the unbalance force vector orientation. Therefore, this can be proposed as a crack detection tool in cracked rotor systems that either exhibit recurrent passage through the critical rotational speeds or steady-state running.


2021 ◽  
Author(s):  
Mohammad AL-Shudeifat ◽  
Fatima Alhammadi

Abstract Appearance of fatigue cracks in rotor systems mainly affects their stiffness content. The stability of such systems at steady-state running is usually analyzed by using the Floquet’s theory. Accordingly, the instability zones of rotational speeds are dominated by negative stiffness content in the whirl response in the vicinity of critical rotational speeds. Consequently, an effective stiffness measure is introduced here to analyze the effect of the crack and the unbalance force vector orientation on the intensity of negative potential and stiffness content in the whirl response. The effective stiffness expression is obtained from the direct integration of the equations of motion of the considered cracked rotor system. The proposed effective stiffness measure is applied for steady-state and transient operations using the Jeffcott rotor model with open and breathing crack models. The intensity of negative potential and stiffness content in the numerical and experimental whirl responses is found to be critically depending on the propagation level of the crack and the unbalance force vector orientation. Therefore, this can be proposed as a crack detection tool in cracked rotor systems that either exhibit recurrent passage through the critical rotational speeds or steady-state running.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 79
Author(s):  
Yuehua Wang ◽  
Xin Xiong ◽  
Xiong Hu

This paper focuses on the stability and nonlinear response of a bearing-rotor system affected by a transverse crack and initial bending which was thought to be part of an unbalance or had been neglected before. The differences of breathing functions for the transverse breathing crack caused by initial bending is presented here, and the calculation of time-varying finite elements stiffness matrix of the cracked shaft is improved by replacing traditional the approximate crack segment with an exact area. After establishing the dynamic model of the cracked rotor with initial bending, vibrational characteristics such as amplitude-speed diagram, frequency spectrogram and bifurcations are investigated in detail. The eigenvalues of the transition matrix are calculated and analyzed as an indicator of dynamic stability with the growths of crack depth and initial bending. Many differences are found between the two cases of dynamic response of rotor system by numerical simulation. The frequency change with the growth of initial bending is opposite to the change with the growth of crack depth, and the shapes of amplitude-speed also having great different features. Stable regions are reduced and extended laterally by initial bending. All these results obtained in this paper will contribute to identify the bending fault and assess the stability of the bearing-rotor systems.


2021 ◽  
pp. 107754632199822
Author(s):  
Jun Liu ◽  
Zhu Han ◽  
Rong Hu

To investigate vibration characteristics and delay crack propagations of an asymmetric cracked rotor, the 3D finite element model of the rotor system with a nonlinear contact method is established. Resonance characteristics of the asymmetrical rotor without a crack and within different locations of a crack are investigated systematically. Numerical results show that a crack affects vibration frequencies and the unstable region of the rotor. Meanwhile, an improved proportional integral differential control method with the electromagnetic actuator is used to accomplish the delay crack propagation and the vibration suppression. Based on the mapping model of opening and closing states of a crack, the effects of rotational speeds, an unbalance, and asymmetries of the rotor are discussed in detail. Experimental results show that vibrations and the breathing behavior of cracks in the rotor with the electromagnetic actuator can be suppressed, and the effectiveness of the proposed mapping model of opening and closing states of a crack is verified.


Author(s):  
Zhaoli Zheng ◽  
Zixuan Li ◽  
Di Zhang ◽  
Yonghui Xie ◽  
Zheyuan Zhang

Abstract The nonlinear breathing crack behaviors and anisotropy of the bearing are important sources of severe vibration of rotor systems. However, the rotor system considering both of these factors has not gained sufficient attention in the existing studies. In this paper, the nonlinear dynamics of such anisotropic breathing cracked rotor system is investigated based on three-dimensional finite element model (FEM). Firstly, the equations of motion of the rotor system are established in the rotating frame to facilitate the modeling of the breathing crack. The fixed-interface component mode synthesis (CMS) is used to reduce the system’s degrees of freedom (DOFs). Then, in the process of solving the equations by harmonic balance method (HBM) and Newton-Raphson method, an original method for fast calculating tangent stiffness matrix is proposed. Finally, the effects of the crack depth, the anisotropy of bearing and relative angle between bearings on the nonlinear dynamics of the system are studied. The results show that the breathing behavior will complicate the vibration and introduce additional transverse stiffness. The increase of crack depth will deteriorate the vibration. The anisotropy and relative angle of bearing will lead to the splitting and merging of the resonant peaks, respectively.


Sign in / Sign up

Export Citation Format

Share Document