(1-28) A Numerical Simulation of Diesel Fuel Spray by LES((FS-3)Fuel Sprays 3-Modeling)

Author(s):  
Shin Kimura ◽  
Hidenori Kosaka ◽  
Ryutaro Himeno ◽  
Yukio Matsui
2000 ◽  
Author(s):  
Tomohiro Minagawa ◽  
Hidenori Kosaka ◽  
Takeyuki Kamimoto

2015 ◽  
Vol 81 ◽  
pp. 960-966 ◽  
Author(s):  
Amin Maghbouli ◽  
Tommaso Lucchini ◽  
Gianluca D’Errico ◽  
Angelo Onorati

Author(s):  
E Winklhofer ◽  
B Ahmadi-Befrui ◽  
B Wiesler ◽  
G Cresnoverh

A current strategy in the development of direct injection (DI) diesel engine combustion systems is the control and limitation of the initial ‘premixed’ combustion heat release ensuing from the auto-ignition of the injected fuel. This requires control of the amount of fuel vaporization and mixing taking place during the ignition delay time. Since the latter is determined by the fuel composition and the in-cylinder gas temperature, development efforts have focused on the injection of well-controlled, portioned fuel quantities prior to the ignition as a means of achieving the desired goal. This practice is becoming known as ‘fuel rate shaping’. Consequently, the fuel spray penetration during this period, fuel evaporation and mixture preparation, as well as the influence of in-cylinder air motion on mixture distribution, are main subjects of interest in affording insight into fuel rate shaping attempts. These have been addressed through a combined experimental and theoretical investigation of the spray characteristics associated with different injection practices. The experimental investigations have been performed in an optically accessed spray research engine. Basic aspects of fuel spray tip penetration, time and location of auto-ignition and flame propagation have been recorded with a high-speed line-scan camera. The results provide the space and time-scale characteristics for the propagation, ignition and combustion of a selection of diesel fuel sprays. Investigations have been carried out for a conventional fuel injection system equipped with a set of different single-hole injector nozzles, as well as for a dual-spring injector and an injector with a split injection device. The experimental results provide an insight into the propagation of the fuel spray front, yield qualitative information about its spatial and temporal distribution, and, in the case of split injection, show the interaction of the initial pilot fuel portion with the main injection.


1997 ◽  
Author(s):  
Terry Parker ◽  
Luca Rainaldi ◽  
Eric Jepsen ◽  
Terry Parker ◽  
Luca Rainaldi ◽  
...  

Author(s):  
Sheng Wei ◽  
Brandon Sforzo ◽  
Jerry Seitzman

In gas turbine combustors, ignition is achieved by using sparks from igniters to start a flame. The process of sparks interacting with fuel/air mixture and creating self-sustained flames is termed forced ignition. Physical and chemical properties of a liquid fuel can influence forced ignition. The physical effects manifest through processes such as droplet atomization, spray distribution, and vaporization rate. The chemical effects impact reaction rates and heat release. This study focuses on the effect of fuel composition on forced ignition of fuel sprays in a well-controlled flow with a commercial style igniter. A facility previously used to examine prevaporized, premixed liquid fuel-air mixtures is modified and employed to study forced ignition of liquid fuel sprays. In our experiments, a wall-mounted, high energy, recessed cavity discharge igniter operating at 15 Hz with average spark energy of 1.25 J is used to ignite liquid fuel spray produced by a pressure atomizer located in a uniform air coflow. The successful outcome of each ignition events is characterized by the (continued) presence of chemiluminescence 2 ms after spark discharge, as detected by a high-speed camera. The ignition probability is defined as the fraction of successful sparks at a fixed condition, with the number of events evaluated for each fuel typically in the range 600–1200. Ten fuels were tested, including standard distillate jet fuels (e.g., JP-8 and Jet-A), as well as many distillate and alternative fuel blends, technical grade n-dodecane, and surrogates composed of a small number of components. During the experiments, the air temperature is controlled at 27 C and the fuel temperature is controlled at 21 C. Experiments are conducted at a global equivalence ratio of 0.55. Results show that ignition probabilities correlate strongly to liquid fuel viscosity (presumably through droplet atomization) and vapor pressure (or recovery temperature), as smaller droplets of a more volatile fuel would lead to increased vaporization rates. This allows the kernel to transition to a self-sustained flame before entrainment reduces its temperature to a point where chemical rates are too slow. Chemical properties of the fuel showed little influence, except when the fuels had similar physical properties. This result demonstrates that physical properties of liquid fuels have dominating effects on forced ignition of liquid fuel spray in coflow air.


1995 ◽  
Author(s):  
P. H. Campbell ◽  
K. M. Sinko ◽  
B. Chehroudi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document