scholarly journals An Investigation into Laser Diagnostic Technique of Liquid Droplets : Part 2 Measurement of Evaporation Rate Constant In Hot Spray

1984 ◽  
Vol 27 (224) ◽  
pp. 241-247 ◽  
Author(s):  
Mitsushige NAKAYAMA ◽  
Takakage ARAI
Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 405-419 ◽  
Author(s):  
Zhijun Zhang ◽  
Wenchao Qin ◽  
Bin Shi ◽  
Jingxin Gao ◽  
Shiwei Zhang

AbstractThe reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012011
Author(s):  
E V Barmina ◽  
M I Zhilnikova ◽  
V D Kobtsev ◽  
S A Kostritsa ◽  
S N Orlov ◽  
...  

Abstract The article is devoted to the analysis of a diffusion combustion of a composite fuel (formed by an addition of non-oxidized aluminum (Al) nanoparticles (NP’s) to n-decane) with oxygen. The process of obtaining Al NP’s consisted of a laser fragmentation of initially large commercially produced NP’s (so called “Alex” with mean diameter is about 450 nm) in the solution of isopropanol. A final size distribution of NP’s was determined by a CPS DC2400 measuring disk centrifuge. The morphology of NP’s was characterized with the Transmission Electron Microscope (TEM) JEM-100C. The measured average diameter of NP’s was about 40 nm. In the final step of a preparation of a composite fuel an isopropanol was exchanged on n-decane. To characterize the composite fuel, diffusion combustion was used in combination with the laser diagnostic technique CARS. Temperature distributions along the x direction were measured at two values of distances from the nozzle. It has been shown that, for the fuel consistent of 0.1% mass concentration of Al NP’s in n-decane, the temperature at the distance equaled 14 mm downstream from the nozzle exit of a burner in the vicinity of the flame front was significantly higher (by 200–300 K) than that upon burning of pure n-decane.


1993 ◽  
Vol 115 (3) ◽  
pp. 707-716 ◽  
Author(s):  
K. Annamalai ◽  
W. Ryan ◽  
S. Chandra

The conventional fuels that are used in the field of transportation are primarily composed of two or more components. Each component evaporates, mixes with hot oxidant gases, ignites, and burns. Since evaporation is the precursor of the sequence of events leading to combustion, the evaporation studies on the multi-component drops are essential for determining the governing parameters of spray evaporation. While single-component drop studies have been carried out extensively in the past, very limited literature exists on the multicomponent array evaporation. The present paper deals with the evaporation of multicomponent fuel droplets in an array using the recently developed point source method (PSM). First, the quasi-steady (QS) evaporation of an isolated, multicomponent droplet is briefly analyzed. The resultant governing equations, along with Raoult’s law and the Cox-Antoine relation, constitute the set of equations needed to arrive at the solutions for: (1) the droplet surface temperature, (2) the evaporation rate of each species, and (3) the vapor mass fraction of each species at the droplet surface. The PSM, which treats the droplet as a point mass source and heat sink, is then adopted to obtain an analytic expression for the evaporation rate of a multicomponent droplet in an array of liquid droplets. Defining the correction factor (η) as a ratio of the evaporation of a drop in an array to the evaporation rate of a similar isolated multi-component drop, an expression for the correction factor is obtained. The results of the point source method (PSM) are then compared with those obtained elsewhere for a three-drop array that uses the method of images (MOI). Excellent agreement is obtained. The treatment is then extended to a binary drop array to study the effect of interdrop spacing on vaporization. When the drops are close to each other, the evaporation rate of the droplet in the array containing the larger percentage of volatiles is higher than the rate under isolated conditions (η>1). The results qualitatively confirm the experimental data reported elsewhere. Parametric results were obtained for the effect of changing the composition on the correction factor and finally critical drop compositions in the binary array are given for which η>1. Even though the results for the average correction factor of the whole array of 2 to 9 drops obtained using PSM are almost the same as the results from MOI, the correction factor of the center drop under severe interaction may deviate from those results obtained with MOI.


Sign in / Sign up

Export Citation Format

Share Document