Development of a sensitive and selective laser diagnostic technique for measuring paramagnetic species

2021 ◽  
Author(s):  
Jamie Lee Lane
2021 ◽  
Vol 2127 (1) ◽  
pp. 012011
Author(s):  
E V Barmina ◽  
M I Zhilnikova ◽  
V D Kobtsev ◽  
S A Kostritsa ◽  
S N Orlov ◽  
...  

Abstract The article is devoted to the analysis of a diffusion combustion of a composite fuel (formed by an addition of non-oxidized aluminum (Al) nanoparticles (NP’s) to n-decane) with oxygen. The process of obtaining Al NP’s consisted of a laser fragmentation of initially large commercially produced NP’s (so called “Alex” with mean diameter is about 450 nm) in the solution of isopropanol. A final size distribution of NP’s was determined by a CPS DC2400 measuring disk centrifuge. The morphology of NP’s was characterized with the Transmission Electron Microscope (TEM) JEM-100C. The measured average diameter of NP’s was about 40 nm. In the final step of a preparation of a composite fuel an isopropanol was exchanged on n-decane. To characterize the composite fuel, diffusion combustion was used in combination with the laser diagnostic technique CARS. Temperature distributions along the x direction were measured at two values of distances from the nozzle. It has been shown that, for the fuel consistent of 0.1% mass concentration of Al NP’s in n-decane, the temperature at the distance equaled 14 mm downstream from the nozzle exit of a burner in the vicinity of the flame front was significantly higher (by 200–300 K) than that upon burning of pure n-decane.


Volume 1 ◽  
2004 ◽  
Author(s):  
Badih A. Jawad ◽  
Chris H. Riedel ◽  
Ahmad Bazzari

The laser diffraction technique constitute an easy and fast on line measurement of drop sizes. Based on the well known theory of diffraction, a laser diagnostic technique is described for the measurement of droplet size distribution. Limitations of the technique are studied to identify accuracy of measurements when applied to dense sprays (i.e. diesel fuel). Drop size measurements are then conducted for different diesel fuel under different conditions of injection and chamber pressures. Results lead to better understanding of the atomization process.


Author(s):  
J.A. Maksem ◽  
C. VanDyke ◽  
H.W. Carter ◽  
C.F. Galang

In the last decade fine needle aspiraration biopsy has gained recognition as a valuable diagnostic technique, and its benefits have been demonstrated in large series of patients with almost every type of tumor (1,2). The usual way to collect cellular material from needle-aspiration biopsies is to discharge the needle and syringe contents onto a microscopic slide and smear the material with another slide. The entire specimen is contained on the slides prepared at the time of biopsy. Serious technical difficulties are inherent to this method. 1) Inconsistent fixation, 2) drying artifact, 3) loss of tissue fragments, 4) inability to confirm impressions by a “second method”, and 5) retention of significant diagnostic material in the needle hub. Our technique avoids these difficulties.


Sign in / Sign up

Export Citation Format

Share Document