Platelet thrombus formation and occlusion at high shear rate of blood flow in stenosis of micro-channel

Author(s):  
Mizuki KOMATSU ◽  
Shunichi KOBAYASHI ◽  
David N. KU
Author(s):  
Masaaki Tamagawa

This paper describes visualization of thrombus formation process on orifice flows by laser sheet beam and normal illumination. The aim is to investigate the effects of shear stress or shear rate on the thrombus formation or thrombus formation rate. It was found that the white thrombus formation rate is proportional to square root of shear rate, and the white thrombus is dominant when the shear rate is more than 450 (1/s).


Author(s):  
Masaaki Tamagawa

This paper describes visualization of thrombus formation process on orifice flows by laser sheet beam. The aim is to investigate the effects of shear stress or shear rate on the thrombus formation or thrombus formation rate. In this investigation, by visualization of the thrombus formation in blood plasma flow, it was found that the high shear rate region of the flow has large effects of the thrombus formation.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1741-1746 ◽  
Author(s):  
Jeffrey F. W. Keuren ◽  
Dominique Baruch ◽  
Paulette Legendre ◽  
Cécile V. Denis ◽  
Peter J. Lenting ◽  
...  

AbstractFibrin is actively involved in platelet reactions essential for thrombus growth, in which von Willebrand factor (VWF) might be an important mediator. The aim of this study was to localize VWF domains that bind to fibrin and to determine their relevance in platelet adhesion. VWF binds specifically to fibrin with an apparent Kd of 2.2 μg/mL. Competition in the presence of 2 complementary fragments, SpIII (residues 1-1365) and SpII (residues 1366-2050), indicated that the high affinity binding site for fibrin is located in the C-terminal part, thus distinct from the A domains. Comparison of 2 deleted rVWF (ΔD4B-rVWF, ΔC1C2-rVWF) suggested that the C1C2 domains contained a fibrin binding site. This site is distinct from RGD, as shown by binding of D1746G-rVWF to fibrin. Perfusion studies at high shear rate demonstrated that C1C2 domains were required for optimal platelet adhesion to fibrin. With the use of a VWF-deficient mouse model, it was found that plasma VWF is critical for platelet tethering and adhesion to fibrin. These results suggest a dual role of fibrin-bound VWF in thrombus formation: first, fibrin-bound VWF is critical in the recruitment of platelets by way of glycoprotein (GP) Ib, and, second, it contributes to stationary platelet adhesion by way of binding to activated αIIbβ3.


Author(s):  
Masaaki Tamagawa

This paper describes visualization of thrombus formation process on orifice flows by laser sheet beam. The aim is to investigate the effects of high shear stress or shear rate on the thrombus formation or thrombus formation rate. In addition, the experimental results are compared with the CFD results. As a result, it was found that the high shear rate region of the flow has large effects of the thrombus formation and prediction method based on CFD can be used.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2199-2199
Author(s):  
Masaaki Doi ◽  
Mitsuhiko Sugimoto ◽  
Hideto Matsui ◽  
Tomoko Matsumoto ◽  
Midori Shima

Abstract Abstract 2199 Coagulation factor VIII (FVIII), lacking in hemophilic blood, plays an essential role in mechanisms of fibrin plug formation to arrest bleeding at sites of injured vessel walls. Physiologic activity of FVIII circulating in bloodstream (soluble FVIII; S-FVIII) could be extensively evaluated so far by classic plasma coagulation assays such as activated partial thromboplastin time. However, the in vivo functional relevance of FVIII bound to von Willebrand factor (VWF) which is immobilized in subendothelium (immobilized FVIII; I-FVIII) is more complex and remains to be addressed. Using an in vitro perfusion chamber system, we have therefore evaluated the function of I-FVIII in the process of mural thrombus generation under whole blood flow conditions. FVIII-free VWF was purified in the presence of 0.35 M CaCl2 from cryoprecipitate, and coated on a glass plate. Various concentrations (0 as a control, 0.1, 0.3, 1, or 3 U/ml) of recombinant FVIII (Kogenate FS provided by Bayer Pharmaceutical Co.) were reacted with the FVIII-free VWF-coated glass plate. After non-adherent proteins were washed out, the amount of FVIII immobilized to a glass surface via VWF (I-FVIII) was measured by ELISA-based assay using a peroxidase-conjugated anti-FVIII polyclonal antibody. Whole blood was then perfused over a glass plate described above in a parallel plate flow chamber with various shear rates, and the thrombus generation process on a glass surface was observed in real time by confocal laser scanning microscopy. The development of intra-thrombus fibrin deposition was assessed by immune-staining of thrombi with a fluorescence-labeled anti-fibrin specific monoclonal antibody (NYB-T2G1; Accurate Chem.), reflecting solid-phase blood coagulation reaction during mural thrombogenesis. In perfusion of control blood with a high shear rate (1500 s-1), the intra-thrombus fibrin deposition was found to increase as a function of I-FVIII, resulting in the 2.5-fold greater fibrin deposition at the plateau as compared to control thrombi generated in the absence of I-FVIII. This I-FVIII effect on intra-thrombus fibrin deposition was also confirmed in perfusion of synthetic hemophilic blood (S-FVIII activity < 1%) which was prepared by the incubation of control blood with an anti-FVIII human IgG (final inhibitor titer in synthetic blood; 5, 10, or 20 Bethesda U/ml). Indeed, I-FVIII normalized in a dose-dependent manner the reduced fibrin deposition (20-35% of normal control) within synthetic hemophilic thrombi generated in the absence of S-FVIII under a high shear rate condition. The improvement of impaired fibrin deposition by I-FVIII was unvarying regardless of the anti-FVIII inhibitor titer in synthetic hemophilic blood. In contrast, the direct addition of recombinant FVIII into synthetic hemophilic blood was poorly effective in this regard, due to the immediate neutralization of S-FVIII by an inhibitor involved in synthetic blood. Thus, these results clearly indicate that I-FVIII, independent of S-FVIII, does play a considerable role on the intra-thrombus fibrin-network formation in the process of mural thrombus generation under whole blood flow conditions with high shear rate, most relevant physiologically for the in vivo hemostasis and thrombosis. Our results might imply a possibility of novel strategic design targeting I-FVIII against hemophilic patients with a high titer anti-FVIII inhibitor. Disclosures: No relevant conflicts of interest to declare.


1989 ◽  
Vol 83 (1) ◽  
pp. 288-297 ◽  
Author(s):  
H J Weiss ◽  
J Hawiger ◽  
Z M Ruggeri ◽  
V T Turitto ◽  
P Thiagarajan ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3521-3521
Author(s):  
Yasunori Matsunari ◽  
Masaaki Doi ◽  
Hideto Matsui ◽  
Kenji Nishio ◽  
Hitoshi Furuya ◽  
...  

Abstract Mural thrombus formation at sites of damaged vessel wall, essential for both physiologic hemostasis and pathological thrombosis, is established by platelet adhesion/aggregation and blood coagulation mechanisms. Although tissue factor (TF) is up-regulated upon vessel wall damage and plays a pivotal role in the latter process, its functional relevance under physiologic blood flow conditions is poorly understood. Using an in vitro perfusion chamber system, we have therefore studied the relevant role of TF in thrombus formation mediated by von Willebrand factor (VWF), a distinctive flow-dependent thrombogenic surface, under whole blood flow conditions with varying shear rates. Human recombinant TF (Innobin) were co-coated with purified VWF (100 ug/ml) onto a glass plate to prepare ‘surface-immobilized TF/VWF complex’. Surface density of immobilized TF, evaluated by the ELISA-based assay using an anti-TF monoclonal antibody, was increased in a concentration-dependent and saturated manner by soluble TF (1-100 pM) added on a plate. Citrated whole blood, recalcified with 8 mM CaCl2 prior to perfusion, was perfused over a VWF-surface in the presence or absence of surface-immobilized TF. Platelet adhesion and aggregation was evaluated by the surface coverage of generated thrombi in a defined area after 5-min perfusion. Mural thrombi formed on VWF-surface were also double-stained with fluorescently labeled anti-fibrin and anti-fibrinogen antibodies. Fibrin generation was evaluated by confocal laser scanning microscopy as a ratio of fibrin relative to fibrinogen fluorescence within mural thrombi. As a result, surface-immobilized TF significantly augmented flow-dependent fibrin generation as a function of increasing surface density of TF under both low (250 s-1) and high (1500 s-1) shear rate conditions. In this regard, soluble TF, when added to sample blood, similarly increased intra-thrombus fibrin generation in a dose-dependent manner in the absence of immobilized TF. However, coagula formation in sample blood was enormously amplified by soluble TF during perfusion, as judged by the flow-path occlusion time. In addition to the enhancing effects on fibrin generation, immobilized TF significantly up-regulated VWF-dependent platelet adhesion and aggregation under high shear rate conditions, albeit with no appreciable effects under low shear rate conditions. These results suggest a synergistic functional link between immobilized TF and VWF in mural thrombus formation under high shear rate conditions. Our results clearly illustrate the thrombogenic potentials of two distinct forms (soluble or surface-immobilized) of TF, in which surface-immobilized TF plays a concerted role on VWF-dependent thrombus formation with lesser risk of systemic hypercoagulability which may be induced by circulating soluble TF under high shear rate conditions. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document