scholarly journals Evaluation of the Fatigue Interface Crack Propagation in Ceramic Coating Materials based on the Interfacial Fracture Mechanics

2000 ◽  
Vol 2000.13 (0) ◽  
pp. 341-342
Author(s):  
Yoshiharu MUTOH ◽  
Jin quan XU ◽  
Yukio MIYASHITA ◽  
Daisuke HIGUCHI
Author(s):  
Timothy P. Ferguson ◽  
Jianmin Qu

Based on interfacial fracture mechanics and the hydrophobicity of the interface, en engineering model was developed in this paper. Using this model, one can predicted the degradation of interfacial fracture toughness of a polymer/metal interface once the moisture concentration near the interface is known.


2017 ◽  
Vol 84 (4) ◽  
Author(s):  
Denizhan Yavas ◽  
Ashraf F. Bastawros

The principals of interfacial fracture mechanics and modified Gibbs adsorption equation are utilized to provide a predictive correlation for the macroscopic (effective) fracture toughness of polymer-based adhesive interfaces, exposed to varying level of contaminant concentration. The macroscopic fracture toughness measurement by double cantilever beam test exhibits a progressive deterioration with the increase of the contaminant surface concentration. The associated variation of fracture surface morphology exhibits ductile-to-brittle failure transition, caused by the contamination-induced suppression of plastic deformation within the adhesive layer. The corresponding intrinsic interfacial surface energy is extracted by finite-element simulation, employing surface-based cohesive elements. The modified Gibbs adsorption equation is utilized to correlate the contamination-induced degradation of the interfacial surface energy as a function of contaminant surface concentration. Interfacial fracture mechanics principals are applied to extend the correlation to the macroscopic fracture toughness of the interface. With additional examination of other systems, the proposed correlation may provide the basis for nondestructive evaluation of bond line integrity, exposed to different levels of contaminant.


Sign in / Sign up

Export Citation Format

Share Document