DRM APPLIED TO THE TIME-STEPPING BEM FOR UNSTEADY HEAT CONDUCTION PROBLEMS IN FUNCTIONALLY GRADED MATERIALS

2002 ◽  
Vol 2002.15 (0) ◽  
pp. 817-818
Author(s):  
Masataka TANAKA ◽  
Toshiro MATSUMOTO ◽  
Yusuke SUDA ◽  
Susumu TAKAKUWA
2007 ◽  
Vol 04 (04) ◽  
pp. 603-619 ◽  
Author(s):  
S. M. HAMZA-CHERIF ◽  
A. HOUMAT ◽  
A. HADJOUI

The h-p version of the finite element method (FEM) is considered to determine the transient temperature distribution in functionally graded materials (FGM). The h-p version may be regarded as the marriage of conventional h-version and p-version. The graded Fourier p-element is used to set up the two-dimensional heat conduction equations. The temperature is formulated in terms of linear shape functions used generally in FEM plus a variable number of trigonometric shape functions representing the internal degrees of freedom (DOF). In the graded Fourier p-element, the function of the thermal conductivity is computed exactly within the conductance matrix and thus overcomes the computational errors caused by the space discretization introduced by the FEM. Explicit and easily programmed trigonometric enriched capacitance, conductance matrices and heat load vectors are derived for plates and cylinders by using symbolic computation. The convergence properties of the h-p version proposed and the results of the numbers of test problems are in good agreement with the analytical solutions. Also, the effect of the non-homogeneity of the FGM on the temperature distribution is considered.


Sign in / Sign up

Export Citation Format

Share Document