Basic study on three dimentional coupling method of molecular dynamics with finite element method

2004 ◽  
Vol 2004.17 (0) ◽  
pp. 137-138
Author(s):  
Shotaro HARA ◽  
Tomohisa KUMAGAI ◽  
Satoshi IZUMI ◽  
Shinsuke SAKAI
2011 ◽  
Vol 03 (01n02) ◽  
pp. 39-47 ◽  
Author(s):  
R. NEUGEBAUER ◽  
R. WERTHEIM ◽  
U. SEMMLER

On cutting tools for high performance cutting (HPC) processes or for hard-to-cut materials, there is an increased importance in so-called superlattice coatings with hundreds of layers each of which is only a few nanometers in thickness. Homogeneity or average material properties based on the properties of single layers are not valid in these dimensions any more. Consequently, continuum mechanical material models cannot be used for modeling the behavior of nanolayers. Therefore, the interaction potentials between the single atoms should be considered. A new, so-called atomic finite element method (AFEM) is presented. In the AFEM the interatomic bonds are modeled as nonlinear spring elements. The AFEM is the connection between the molecular dynamics (MD) method and the crystal plasticity FEM (CPFEM). The MD simulates the atomic deposition process. The CPFEM considers the behavior of anisotropic crystals using the continuum mechanical FEM. On one side, the atomic structure data simulated by MD defines the interface to AFEM. On the other side, the boundary conditions (displacements and tractions) of the AFEM model are interpolated from the CPFEM simulations. In AFEM, the lattice deformation, the crack and dislocation behavior can be simulated and calculated at the nanometer scale.


2020 ◽  
Vol 1000 ◽  
pp. 82-89
Author(s):  
Dhyah Annur ◽  
Muhammad S. Utomo ◽  
Talitha Asmaria ◽  
Daniel P. Malau ◽  
Sugeng Supriadi ◽  
...  

Osteosarcoma, as the most frequent bone tumor cases, can be found in the pelvis bone. Within the pelvis, the ilium is the most common location for osteosarcoma, followed by the acetabulum and then the ischium. Surgery of pelvis is difficult and the reconstruction is complicated mainly due to the geometry complexity and also the weight support function of the pelvis. Endoprosthesis of the ilium is therefore designed to increase the quality of life of the patient. In this study, the iliac implant is designed based on the natural geometry of the ilium, and the size is modified to fit the morphometry of the Eastern Asian. A finite element method (FEM) is proposed as a basic study in material selection. Titanium and its alloy (Ti-6Al-4V) are studied as the potential candidate for the proposed implant while the finite analysis of the bone was also included. As a preliminary study, in this FEM, only the static load is given, each material is assumed to be isotropic and the contacts were considered bonded. FEM in this study is expected to give a better understanding of the stress distribution, and to optimize the selection of materials.


2006 ◽  
Vol 18 (4) ◽  
pp. 426-432
Author(s):  
Tetsuya Yokoyama ◽  
◽  
Hideki Tanahashi ◽  
Haruhisa Kawasaki ◽  

We proposed a method that enables to deform a soft object using a linear Finite Element Method (FEM) in real-time. In the proposed technique, since the calculation amount is reduced to <I>O</I> (<I>n</I>) (<I>n</I>: number of nodes), grasping is enabled in virtual space. In this paper, we studied grasping of a soft object taking gravity into consideration. Some simulations using a stiffness equation containing gravity demonstrated the validity of our proposal.


Sign in / Sign up

Export Citation Format

Share Document