Improvement of multi-stage forging process using finite element analysis and numerical optimization technique

2019 ◽  
Vol 2019.57 (0) ◽  
pp. 305
Author(s):  
Hori KATSUHIRO ◽  
Ryutaro HINO
2021 ◽  
Vol 901 ◽  
pp. 176-181
Author(s):  
Tung Sheng Yang ◽  
Chieh Chang ◽  
Ting Fu Zhang

This paper used finite element analysis of metal forming to study the forging process and die design of aluminum alloy brake parts. According to the process parameters and die design, the brake parts were forged by experiment. First, the die design is based on the product size and considering parting line, draft angle, forging tolerance, shrinkage and scrap. Secondly, the finite element analysis of metal forming is used to simulate the forging process of aluminum alloy brake parts. Finally, the aluminum alloy brake levers with dimensional accuracy and surface hardness were forged.


2009 ◽  
Vol 16-19 ◽  
pp. 1248-1252
Author(s):  
Chun Dong Zhu ◽  
Man Chun Zhang ◽  
Lin Hua

As an important forged part of an automobile, the inner hole of the half-shaft bushing must be formed directly. However, the process requires many steps, and how the forging, or deformation, is spread over the production steps directly affects the die life and forging force required. In this paper, the three steps involved in directly forging a half shaft bushing's inner hole are simulated using the two-dimensional finite element method. Further more, we improve the forging process. From numerical calculation, the improved necessary forging force is found to be only half the original force, and the die life is doubled.


2019 ◽  
Vol 823 ◽  
pp. 141-144
Author(s):  
Tung Sheng Yang ◽  
Yong Nan Chen

The feasibility of forging of AL-1050 alloy of cylindrical heatsink under warm conditions is demonstrated in the present work. The stress-strain curves and friction factor play an important role in the cylindrical heatsink forging. The purpose of forging lubrication is to reduce friction between blank and die, and to decrease resistance of metal flow to die. The stress-strain curves at different temperatures are obtained by compressing tests. The friction factor between 1050 aluminum alloy and die material are determined at different temperatures by ring compression tests with graphite lubricants. The compressing and ring compressing tests are carried out by using the computerized screw universal testing machine. The finite element method is used to investigate the forming characters of the forging process. To verify the prediction of FEM simulation in the cylindrical heatsink forging process, the experimental parameters such as stress-strain curves and fiction factor, are as the input data during analysis. Maximum forging load and effective stress distribution are determined of the heatsink forging, using the finite element analysis. Finally, the cylindrical heatsink parts are formed by the forging machine under the conditions using finite element analysis.


2011 ◽  
Vol 295-297 ◽  
pp. 1564-1567
Author(s):  
Yong Hong ◽  
Seokjun Yu ◽  
Jaejung Lee ◽  
Hyeonsu Ha ◽  
Dong Pyo Hong

The multi-stage boom consisting of several booms is used in order to develop the aerial platform truck that can be used in a working radius that is higher and safe. Because the length increases compared with the width or the height of the structure, the intensity and rigidity are lowered along with the safety. Accordingly, a countermeasure is needed. Therefore, in this research, when designing of the high ground work difference Boom System, the safety the stress of the considered boom the analyze method and experimental method tries to be evaluated through the comparison. The finite-element analysis(FEA) compared the Strain value which is obtained through the resolution value and actual experiment by using the Ansys,that is the general purpose program, and proved this safety.


Sign in / Sign up

Export Citation Format

Share Document