The Al-powder forging process: its finite element analysis

2001 ◽  
Vol 111 (1-3) ◽  
pp. 204-209 ◽  
Author(s):  
J.R Cho ◽  
Y.S Joo ◽  
H.S Jeong
2021 ◽  
Vol 901 ◽  
pp. 176-181
Author(s):  
Tung Sheng Yang ◽  
Chieh Chang ◽  
Ting Fu Zhang

This paper used finite element analysis of metal forming to study the forging process and die design of aluminum alloy brake parts. According to the process parameters and die design, the brake parts were forged by experiment. First, the die design is based on the product size and considering parting line, draft angle, forging tolerance, shrinkage and scrap. Secondly, the finite element analysis of metal forming is used to simulate the forging process of aluminum alloy brake parts. Finally, the aluminum alloy brake levers with dimensional accuracy and surface hardness were forged.


2009 ◽  
Vol 16-19 ◽  
pp. 1248-1252
Author(s):  
Chun Dong Zhu ◽  
Man Chun Zhang ◽  
Lin Hua

As an important forged part of an automobile, the inner hole of the half-shaft bushing must be formed directly. However, the process requires many steps, and how the forging, or deformation, is spread over the production steps directly affects the die life and forging force required. In this paper, the three steps involved in directly forging a half shaft bushing's inner hole are simulated using the two-dimensional finite element method. Further more, we improve the forging process. From numerical calculation, the improved necessary forging force is found to be only half the original force, and the die life is doubled.


2019 ◽  
Vol 823 ◽  
pp. 141-144
Author(s):  
Tung Sheng Yang ◽  
Yong Nan Chen

The feasibility of forging of AL-1050 alloy of cylindrical heatsink under warm conditions is demonstrated in the present work. The stress-strain curves and friction factor play an important role in the cylindrical heatsink forging. The purpose of forging lubrication is to reduce friction between blank and die, and to decrease resistance of metal flow to die. The stress-strain curves at different temperatures are obtained by compressing tests. The friction factor between 1050 aluminum alloy and die material are determined at different temperatures by ring compression tests with graphite lubricants. The compressing and ring compressing tests are carried out by using the computerized screw universal testing machine. The finite element method is used to investigate the forming characters of the forging process. To verify the prediction of FEM simulation in the cylindrical heatsink forging process, the experimental parameters such as stress-strain curves and fiction factor, are as the input data during analysis. Maximum forging load and effective stress distribution are determined of the heatsink forging, using the finite element analysis. Finally, the cylindrical heatsink parts are formed by the forging machine under the conditions using finite element analysis.


2013 ◽  
Vol 365-366 ◽  
pp. 561-564
Author(s):  
Jian Jun Wang ◽  
Su Lan Hao ◽  
Lu Pan ◽  
Yan Ming Zhang

In view of large load, the shape of large crank forgings and forging process are designed reasonably. Large crank forging process is simulated by numerical simulation software DEFORM-3D to improve the forging process and the dies, including adding upsetting step and related dies. The result shows that improved process and dies can obtain higher quality finish forgings and the load reduces to a rational level, which provides basis for crank forging process and die design.


2008 ◽  
Vol 575-578 ◽  
pp. 1139-1144 ◽  
Author(s):  
Chan Chin Wang

A simulator based on rigid-plastic finite element method is developed for simulating the plastic flow of material in forging processes. In the forging process likes backward extrusion, a workpiece normally undergoes large deformation around the tool corners that causes severe distortion of elements in finite element analysis. Since the distorted elements may induce instability of numerical calculation and divergence of nonlinear solution in finite element analysis, a computational technique of using the Euler’s fixed meshing method is proposed to deal with large deformation problem by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. With this method, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. The proposed method is found to be effective in simulating complicated material flow inside die cavity which has many sharp edges, and also the extrusion of relatively slender parts like fins. In this paper, the formulation of rigid-plastic finite element method based on plasticity theory for slightly compressible material is introduced, and the advantages of the proposed method as compared to conventional one are discussed.


Sign in / Sign up

Export Citation Format

Share Document