Void Fraction Measurement of Two-phase Flow in Vertical tubes and Validation of Extended Two-fluid Model

2003 ◽  
Vol 2003 (0) ◽  
pp. 189
Author(s):  
Masaki Misawa ◽  
Akihiko Minato ◽  
Akio Suzuki ◽  
Naoki Ichikawa ◽  
Masaharu Kuroda
Author(s):  
Shimo Yu ◽  
Xiao Yan ◽  
Junyi Zhang

Two-phase flow is an important and common phenomenon in nuclear reactor systems, and the characteristics of two-phase flow such as heat transfer and pressure drop strongly depend on the radial distribution of void fraction. This paper is presenting the CFD simulation for void fraction radial distribution of mono- and poly-disperse air-water two phase flow using Euler-Euler two-fluid model. Interfacial forces including transverse forces such as lift, wall and turbulent dispersion forces are taken into account, Furthermore the bubble size distribution and bubble break-up and coalescence processes are taken into account in case of a poly-disperse flow by using the S-Gamma model. The sauter mean diameter and interfacial area concentration (IAC) distribution can also be obtained. The simulation results are compared to an experimental database of MT-LOOP test facility (FZD, Germany)[1].


2021 ◽  
Vol 33 (3) ◽  
pp. 033324
Author(s):  
Alejandro Clausse ◽  
Martín López de Bertodano

Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


Author(s):  
Hiroyuki Yoshida ◽  
Takeharu Misawa ◽  
Kazuyuki Takase

Two-fluid model can simulate two phase flow less computational cost than inter-face tracking method and particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D, which adopts boundary fitted coordinate system in order to simulate complex shape channel flow. In this paper, boiling two-phase flow analysis in a tight lattice rod bundle is performed by ACE-3D code. The parallel computation using 126CPUs is applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. At height z = 0.5 m, void fraction in the gap region is higher in comparison with that in center region of the subchannel. However, at height of z = 1.1m, higher void fraction distribution exists in center region of the subchannel in comparison with the gap region. The tendency of void fraction to concentrate in the gap region at vicinity of boiling starting point, and to move into subchannel as water goes through rod bundle, is qualitatively agreement with the measurement results by neutron radiography. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight lattice rod bundle with no lift force model (neglecting lift force acting on bubbles) is also performed. From the comparison of numerical results, it is concluded that the effects of lift force model are not so large on overall void fraction distribution in tight lattice rod bundle. However, higher void fraction distribution in center region of the subchannel was not observed in this simulation. It is concluded that the lift force model is important for local void fraction distribution in rod bundles.


2004 ◽  
Vol 45 (10) ◽  
pp. 1049-1066 ◽  
Author(s):  
Moon-Sun Chung ◽  
Seung-Kyung Pak ◽  
Keun-Shik Chang

SPE Journal ◽  
2012 ◽  
Vol 17 (03) ◽  
pp. 942-955 ◽  
Author(s):  
Mahdy Shirdel ◽  
Kamy Sepehrnoori

Summary A great deal of research has been focused on transient two-phase flow in wellbores. However, there is lack of a comprehensive two-fluid model in the literature. In this paper, we present an implementation of a pseudo-compositional, thermal, fully implicit, transient two-fluid model for two-phase flow in wellbores. In this model, we solve gas/liquid mass balance, gas/liquid momentum balance, and two-phase energy balance equations to obtain five primary variables: liquid velocity, gas velocity, pressure, holdup, and temperature. This simulator can be used as a stand-alone code or can be used in conjunction with a reservoir simulator to mimic wellbore/reservoir dynamic interactions. In our model, we consider stratified, bubbly, intermittent, and annular flow regimes using appropriate closure relations for interphase and wall-shear stress terms in the momentum equations. In our simulation, we found that the interphase and wall-shear stress terms for different flow regimes can significantly affect the model's results. In addition, the interphase momentum transfer terms mainly influence the holdup value. The outcome of this research leads to a more accurate simulation of multiphase flow in the wellbore and pipes, which can be applied to the surface facility design, well-performance optimization, and wellbore damage estimation.


1997 ◽  
Vol 63 (611) ◽  
pp. 2377-2385
Author(s):  
Kiyoshi MINEMURA ◽  
Tomomi UCHIYAMA ◽  
Katsuhiko KINOSHITA ◽  
Lin LYU ◽  
Shinji SYODA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document