ICONE11-36300 INVESTIGATION OF FLOW CHARACTERISTICS IN GAS-LIQUID SEPARATOR WITH AIR-WATER TWO-PHASE FLOW EXPERIMENT

Author(s):  
Kimitoshi Yoneda ◽  
Fumio Inada ◽  
Akira Yasuo
Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Chen Wang ◽  
Lujie Zhou ◽  
Yujing Jiang ◽  
Xuepeng Zhang ◽  
Jiankang Liu

An appropriate understanding of the hydraulic characteristics of the two-phase flow in the rock fracture network is important in many engineering applications. To investigate the two-phase flow in the fracture network, a study on the two-phase flow characteristics in the intersecting fractures is necessary. In order to describe the two-phase flow in the intersecting fractures quantitatively, in this study, a gas-water two-phase flow experiment was conducted in a smooth 3D model with intersecting fractures. The results in this specific 3D model show that the flow structures in the intersecting fractures were similar to those of the stratified wavy flow in pipes. The nonlinearity induced by inertial force and turbulence in the intersecting fractures cannot be neglected in the two-phase flow, and the Martinelli-Lockhart model is effective for the two-phase flow in intersecting fractures. Delhaye’s model can be adapted for the cases in this experiment. The turbulence of the flow can be indicated by the values of C in Delhaye’s model, but resetting the appropriate range of the values of C is necessary.


Equipment ◽  
2006 ◽  
Author(s):  
Marijus Seporaitis ◽  
S. Gasiunas ◽  
Raimondas Pabarcius

2021 ◽  
pp. 103813
Author(s):  
Dewei Wang ◽  
Shanbin Shi ◽  
Yucheng Fu ◽  
Kyle Song ◽  
Xiaodong Sun ◽  
...  

Data in Brief ◽  
2018 ◽  
Vol 16 ◽  
pp. 527-530 ◽  
Author(s):  
Abdalellah O. Mohmmed ◽  
Mohammad S. Nasif ◽  
Hussain H. Al-Kayiem

Author(s):  
Jorge Pinho ◽  
Patrick Rambaud ◽  
Saïd Chabane

The goal of this study is to understand the behavior of a safety relief valve in presence of a two-phase flow induced by cavitation, in which the mass flux tends to be reduced. Two distinct safety relief valves are tested: an API 2J3 type and a transparent model based on an API 1 1/2G3 type. Instead of using a spring, the design of both valves allows the adjustment of the disk at any desired lift. Tests are conducted with water at ambient temperature. Results show a similar influence of cavitation on the flow characteristics of both valves. The liquid pressure recovery factor FL, which is normally used to identify a choked flow condition in a control valve, is experimentally determined in a safety relief valve. The existence of a local minimum located at a height position L/D = 0.14 indicates in this position, a change on the flow characteristics of both valves. It is verified that the existence of a local minimum in the liquid recovery factor is related to the minimum cross section of the flow, which does not remain constant for every lift positions. Furthermore, it is remarked that in the case of the 2J3 safety valve, the blow down ring adjustment has significant influence on the location of the minimum cross sections of the flow.


Sign in / Sign up

Export Citation Format

Share Document