scholarly journals Experimental data for the slug two-phase flow characteristics in horizontal pipeline

Data in Brief ◽  
2018 ◽  
Vol 16 ◽  
pp. 527-530 ◽  
Author(s):  
Abdalellah O. Mohmmed ◽  
Mohammad S. Nasif ◽  
Hussain H. Al-Kayiem
Author(s):  
Y M Ferng ◽  
C C Chieng ◽  
C Pan

Using the multi-dimensional, turbulent, two-phase flow model, the fluid flow phenomena for gas injecting through a submerged lance in gas-stirred reactors are investigated numerically by a finite difference algorithm. The present numerical model is validated by comparison with the experimental data of the water model and extended to predict the flow fields and mixing phenomena inside the liquid metal model. This study indicates that the flow characteristics and mixing behaviour of the water model are similar to the metal model and the experimental data of the water model can be an important reference for the design of liquid metal reactors. The investigations consist of central (two-dimensional) and off-centred gas injection (three-dimensional) with full—and fractional—depth of lance submergence and with different gas injection rates.


Author(s):  
T. M. Brueckner ◽  
M. A. Rahman ◽  
M. M. Awad

In the current study, an experimental study on two-phase flow at different orientations is carried out at the Fluids Laboratory, Memorial University of Newfoundland (MUN). Three different orientations are used. They are horizontal, vertical and slanted orientation respectively. The experimental unit consists of pipes that are three inches (DN 80) in diameter and are capable of producing many various regimes of gasliquid flows. The experimental unit has sensors to measure the pressure, temperature and volume flow at numerous locations. Experiments are conducted for two-phase flow (bubble and slug flow). The new experimental data can provide valuable insights on the viscous effects with many flow regimes, phase compositions and direction of flow. The results of this research provide valuable new experimental data on two-phase flow characteristics for many flow regimes that can improve the safety and efficiency of wellstream flows.


Equipment ◽  
2006 ◽  
Author(s):  
Marijus Seporaitis ◽  
S. Gasiunas ◽  
Raimondas Pabarcius

2021 ◽  
pp. 103813
Author(s):  
Dewei Wang ◽  
Shanbin Shi ◽  
Yucheng Fu ◽  
Kyle Song ◽  
Xiaodong Sun ◽  
...  

2017 ◽  
Vol 53 (1) ◽  
pp. 199-221 ◽  
Author(s):  
Abdullah Cihan ◽  
Jens Birkholzer ◽  
Luca Trevisan ◽  
Ana Gonzalez-Nicolas ◽  
Tissa Illangasekare

Author(s):  
Jorge Pinho ◽  
Patrick Rambaud ◽  
Saïd Chabane

The goal of this study is to understand the behavior of a safety relief valve in presence of a two-phase flow induced by cavitation, in which the mass flux tends to be reduced. Two distinct safety relief valves are tested: an API 2J3 type and a transparent model based on an API 1 1/2G3 type. Instead of using a spring, the design of both valves allows the adjustment of the disk at any desired lift. Tests are conducted with water at ambient temperature. Results show a similar influence of cavitation on the flow characteristics of both valves. The liquid pressure recovery factor FL, which is normally used to identify a choked flow condition in a control valve, is experimentally determined in a safety relief valve. The existence of a local minimum located at a height position L/D = 0.14 indicates in this position, a change on the flow characteristics of both valves. It is verified that the existence of a local minimum in the liquid recovery factor is related to the minimum cross section of the flow, which does not remain constant for every lift positions. Furthermore, it is remarked that in the case of the 2J3 safety valve, the blow down ring adjustment has significant influence on the location of the minimum cross sections of the flow.


SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 921-930 ◽  
Author(s):  
Antonin Chapoy ◽  
Rod Burgass ◽  
Bahman Tohidi ◽  
J. Michael Austell ◽  
Charles Eickhoff

Summary Carbon dioxide (CO2) produced by carbon-capture processes is generally not pure and can contain impurities such as N2, H2, CO, H2 S, and water. The presence of these impurities could lead to challenging flow-assurance issues. The presence of water may result in ice or gas-hydrate formation and cause blockage. Reducing the water content is commonly required to reduce the potential for corrosion, but, for an offshore pipeline system, it is also used as a means of preventing gas-hydrate problems; however, there is little information on the dehydration requirements. Furthermore, the gaseous CO2-rich stream is generally compressed to be transported as liquid or dense-phase in order to avoid two-phase flow and increase in the density of the system. The presence of impurities will also change the system's bubblepoint pressure, hence affecting the compression requirement. The aim of this study is to evaluate the risk of hydrate formation in a CO2-rich stream and to study the phase behavior of CO2 in the presence of common impurities. An experimental methodology was developed for measuring water content in a CO2-rich phase in equilibrium with hydrates. The water content in equilibrium with hydrates at simulated pipeline conditions (e.g., 4°C and up to 190 bar) as well as after simulated choke conditions (e.g., at -2°C and approximately 50 bar) was measured for pure CO2 and a mixture of 2 mol% H2 and 98 mol% CO2. Bubblepoint measurements were also taken for this binary mixture for temperatures ranging from -20 to 25°C. A thermodynamic approach was employed to model the phase equilibria. The experimental data available in the literature on gas solubility in water in binary systems were used in tuning the binary interaction parameters (BIPs). The thermodynamic model was used to predict the phase behavior and the hydrate-dissociation conditions of various CO2-rich streams in the presence of free water and various levels of dehydration (250 and 500 ppm). The results are in good agreement with the available experimental data. The developed experimental methodology and thermodynamic model could provide the necessary data in determining the required dehydration level for CO2-rich systems, as well as minimum pipeline pressure required to avoid two-phase flow, hydrates, and water condensation.


Sign in / Sign up

Export Citation Format

Share Document