B101 FLOW AND HEAT TRANSFER OF CARBON DIOXIDE FLOWING THROUGH SMALL TUBE NEAR THE CRITICAL POINT

Author(s):  
Tomokazu Yokoyama ◽  
Isao Ishihara ◽  
Hideki Tomiyama ◽  
Takashi Sasajima ◽  
Ryosuke Matsumoto
Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 756 ◽  
Author(s):  
Yue Sun ◽  
Guiping Lin ◽  
Xueqin Bu ◽  
Lizhan Bai ◽  
Chunhua Xiao ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7077
Author(s):  
Bo Hu ◽  
Xuesong Li ◽  
Xiaodong Ren ◽  
Jiaxing Lu

The authors would like to make the following explanations and changes to the original paper [...]


Author(s):  
Chien-Yuh Yang ◽  
Kun-Chieh Liao

This paper provides an experimental investigation of heat transfer performance and pressure drop of supercritical carbon dioxide cooling in microchannel heat exchanger. An extruded flat aluminum tube with 37 parallel channels and each channel of 0.5 mm × 0.5 mm cross section was used as the test section. Super critical carbon dioxide at pressure of 7.5 MPa and inlet temperature varied from 55 to 25 °C was tested. The temperature drops of CO2 cooled inside the test section was controlled at 2, 4 and 8 °C separately for each test to investigate the effect of properties change on the friction and heat transfer performance at various temperature cooling ranges near the critical point. The test results showed that while the test conditions were away from (approximately 5 °C higher or lower) the critical point, both heat transfer and pressure drop performance agreed very well with those predicted by convention correlations. However, while the test conditions near the critical point, the difference between the present test results and the prediction values is very high. From the experiment results of various temperature change range inside the test section, we can find that both heat transfer and pressure drop were strongly affected by the temperature cooling ranges near the critical point. Since there is a drastic peak of the properties change near the critical point, neither fluid properties at the average temperature nor the average properties at the inlet and exit temperatures may appropriately present the actual properties change in the test process. If we use the properties integrated but not averaged from inlet to the exit temperatures, we may obtain the results that agree well with the values predicted by conventional correlations. The heat transfer and pressure drop performance of super critical carbon dioxide are indeed similar to these at normal conditions if its properties were appropriately evaluated.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2613
Author(s):  
Hu ◽  
Li ◽  
Fu ◽  
Gu ◽  
Ren ◽  
...  

A centrifugal carbon dioxide compressor is a kind of general machine with extensive applications. The geometry of the side chambers of the compressors can be determined by studying the rotor-stator cavity with centripetal through-flow. In this paper, numerical simulations were conducted to predict the characteristics of flow and heat transfer. Three different speeds of rotation and two axial gap widths were considered. The correlations of the core swirl ratios were determined by fitting the results for two axial gap widths. The amounts of the moment coefficients of the disk were predicted. In order to better analyze the temperature field, the radial distributions of the local heat transfer coefficient were numerically investigated. According to the simulation results, the average Nusselt number was found to be dominated by the turbulent flow parameter. It also seemed to be proportional to the moment coefficient at a fixed circumferential Reynolds number.


Author(s):  
U. Grigull ◽  
E. Abadzic

This work deals with experimental results on boiling from a horizontal platinum wire, 0·1 mm in diameter, submerged in saturated liquids as carbon dioxide (CO2) and Freon 13 (CF3Cl) in the critical region. Three discrete regimes without steady transition could be observed: natural convection, nucleate boiling, and film boiling. Near the critical point particular flow patterns appeared in the rising vapour in film boiling: regular bubbles, vapour columns, and vapour hazes with garland-like boundaries. These flow patterns could be simulated in model experiments with liquids and were also photographed with a high-speed camera.


Author(s):  
Alan Kruizenga ◽  
Mark Anderson ◽  
Michael Corradini

Recently, it has become increasingly important to improve efficiency and reduce capital costs in nuclear power plants. This prompted significant work in studying advanced Brayton cycles for high temperature energy conversion. A particular improvement in the operation of an advanced carbon dioxide cycle, is the use of compact, highly efficient, diffusion bonded heat exchangers for the recuperators. These heat exchangers operate near the pseudo-critical point of liquid carbon dioxide, making use of the drastic variation of the thermo-physical properties. This paper focuses on the experimental measurements of heat transfer and pressure drop characteristics within mini-channels. Two test section channel geometries are studied: a straight channel and a zig-zag channel. Both configurations are 0.5m in length and constructed out of 316 stainless steel with a series of nine parallel 1.9mm semi-circular channels. The zig-zag configuration has an angle of 115 degrees with an effective length of ∼0.58m. Heat transfer measurements are conducted for varying ranges of inlet temperatures, pressures, and mass flow rates. Local and average heat transfer coefficients near the critical point are determined from measured wall temperatures and calculated local bulk temperatures.


Sign in / Sign up

Export Citation Format

Share Document