GDN-7 STUDY ON OPTIMIZATION OF HYPOID GEAR DIMENSIONS AND TOOTH FLANK MODIFICATIONS(GEAR DYNAMICS AND NOISE)

Author(s):  
Katsuhiro MORI
Author(s):  
Claude Gosselin ◽  
Jack Masseth ◽  
Wei Liang

In the manufacturing of spiral-bevel and hypoid gears, circular cutter dimensions are usually based on the desired performance of a gear set. In large manufacturing operations, where several hundred gear geometries may have been cut over the years, the necessary cutter inventory may become quite large since the cutter diameters will differ from one geometry to another, which results in used storage space and associated costs in purchasing and maintaining the cutter parts. Interchangeability of cutters is therefore of significant interest to reduce cost while maintaining approved tooth geometries. An algorithm is presented which allows the use of a different cutter, either in diameter and/or pressure angle, to obtain the same tooth flank surface topography. A test case is presented to illustrate the usefulness of the method: the OB cutter diameter of an hypoid pinion is changed from 8.9500" to 9.1000". CMM results and the comparison of the bearing patterns before and after change show excellent correlation, and indicate that the new pinion can be used in place of the original pinion without performance or quality problems. Significant cost reductions may be obtained with the application of the method.


Author(s):  
Leonidas Paouris ◽  
Stephanos Theodossiades ◽  
Miguel De la Cruz ◽  
Homer Rahnejat ◽  
Adam Kidson ◽  
...  

Film thickness and sub-surface stress distribution in a highly loaded automotive differential hypoid gear pair are examined. A 4-Degree of Freedom torsional gear dynamics model, taking into account the torsional stiffness of the pinion and the gear shafts, is used in order to evaluate the contact load, the surface velocities and the contact radii of curvature of the mating teeth during a full meshing cycle. The torsional gear dynamics model takes into account both the geometric non-linearities of the system (backlash non-linearity) as well as the time varying properties (contact radii, meshing stiffness) and the internal excitations caused by geometrical imperfections of the teeth pair (static transmission error). The input torque used for the study of the film thickness and the sub-surface stress distribution corresponds to the region after the main resonance, where no teeth separation occurs. The contact conditions predicted by the gear dynamics are used as the input for the elastohydrodynamic elliptical point contact analysis. The lubricant film thickness, the corresponding pressure and surface traction distributions are obtained quasi-statically using the output load of the dynamic gear pair model. The variation of the induced sub-surface stress field is determined throughout a meshing cycle. Based on the sub-surface reversing orthogonal shear stresses, marginal differences occur when the viscous shear on the conjunctional surfaces are taken into account, which are mainly influenced by the applied pressure distribution. The numerical prediction of lubricant film thickness agrees reasonably well with that predicted using the well-established extrapolated oil film thickness formulae reported in the literature.


Author(s):  
Qi Fan ◽  
Ronald S. DaFoe ◽  
John W. Swanger

The increasing demand for low noise and high strength leads to higher quality requirements in manufacturing spiral bevel and hypoid gears. Due to heat treatment distortions, machine tolerances, variation of cutting forces and other unpredictable factors, the real tooth flank form geometry may deviate from the theoretical or master target geometry. This will cause unfavorable displacement of tooth contact and increased transmission errors, resulting in noisy operation and premature failure due to edge contact and highly concentrated stresses. In the hypoid gear development process, a corrective machine setting technique is usually employed to modify the machine settings, compensating for the tooth flank form errors. Existing published works described the corrective machine setting technique based on the use of mechanical hypoid gear generators, and the second order approximation of error surfaces. Today, Computer Numerically Controlled (CNC) hypoid gear generators have been widely employed by the gear industry. The Universal Motion Concept (UMC) has been implemented on most CNC hypoid generators, providing additional freedoms for the corrections of tooth flank form errors. Higher order components of the error surfaces may be corrected by using the higher order universal motions. This paper describes a new method of tooth flank form error correction utilizing the universal motions for spiral bevel and hypoid gears produced by the face-milling process. The sensitivity of the changes of tooth flank form geometry to the changes of universal motion coefficients is investigated. The corrective universal motion coefficients are determined through an optimization process with the target of minimization of the tooth flank form errors. A numerical example of a face-mill completing process is presented. The developed new approach has been implemented with computer software. The new approach can also be applied to the face-hobbing process.


2015 ◽  
Vol 84 ◽  
pp. 113-124 ◽  
Author(s):  
Szu-Hung Chen ◽  
Zhang-Hua Fong
Keyword(s):  

2014 ◽  
Vol 72 ◽  
pp. 1-16 ◽  
Author(s):  
Ryohei Takeda ◽  
Masaharu Komori ◽  
Tatsuya Nishino ◽  
Yukihiko Kimura ◽  
Takayuki Nishino ◽  
...  

2008 ◽  
Vol 130 (7) ◽  
Author(s):  
Qi Fan ◽  
Ronald S. DaFoe ◽  
John W. Swanger

The increasing demand for low noise and high strength leads to higher quality requirements in manufacturing spiral bevel and hypoid gears. Due to heat treatment distortions, machine tolerances, variation of cutting forces, and other unpredictable factors, the real tooth flank form geometry may deviate from the theoretical or master target geometry. This will cause unfavorable displacement of tooth contact and increased transmission errors, resulting in noisy operation and premature failure due to edge contact and highly concentrated stresses. In the hypoid gear development process, a corrective machine setting technique is usually employed to modify the machine settings, compensating for the tooth flank form errors. Existing published works described the corrective machine setting technique based on the use of mechanical hypoid gear generators, and the second-order approximation of error surfaces. Today, computer numerically controlled (CNC) hypoid gear generators have been widely employed by the gear industry. The universal motion concept has been implemented on most CNC hypoid generators, providing additional freedoms for the corrections of tooth flank form errors. Higher-order components of the error surfaces may be corrected by using the higher-order universal motions. This paper describes a new method of tooth flank form error correction utilizing the universal motions for spiral bevel and hypoid gears produced by the face-milling process. The sensitivity of the changes of tooth flank form geometry to the changes of universal motion coefficients is investigated. The corrective universal motion coefficients are determined through an optimization process with the target of minimization of the tooth flank form errors. A numerical example of a face-mill completing process is presented. The developed new approach has been implemented with computer software. The new approach can also be applied to the face-hobbing process.


Sign in / Sign up

Export Citation Format

Share Document