P8: Statistical Analysis of Optimum Friction Welding Condition of 5056 Aluminum Alloy Friction Welded Joint(SHORT ORAL PRESENTATION FOR POSTERS I)

Author(s):  
R. TSUJINO ◽  
G. KAWAI ◽  
H. OCHI ◽  
H. YAMAGUCHI ◽  
K. OGAWA ◽  
...  
2015 ◽  
Vol 2015 (0) ◽  
pp. _J0470105--_J0470105-
Author(s):  
Masaaki KIMURA ◽  
Tsukasa IIJIMA ◽  
Masahiro KUSAKA ◽  
Koichi KAIZU ◽  
Akiyoshi FUJI ◽  
...  

2020 ◽  
Vol 170 ◽  
pp. 02004
Author(s):  
Yashwant Chapke ◽  
Dinesh Kamble ◽  
Saoud Md. Salim Shaikh

Friction welding process is a forging welding process in which work piece are joined due to heat produced by friction between two joining surfaces and upset pressure is applied by non-rotating work piece. Joining of aluminum alloy with dissimilar material is important research area to focus on as maximum aircraft structures havexx Aluminum alloy frame and aerospace designers familiar with Aluminum alloy and its design considerations. After comparison of mechanical properties and application of light weight alloys aluminum alloys, tungsten, stainless steel and copper, copper selected as dissimilar material to join with Aluminum alloy AA6063. AA 6063 also known as architectural alloy selected based upon its properties. This dissimilar joint of AA6063 and Copper has application in electrical conductors as copper is good electrical conductivity and used in maximum electrical conductors. In this research work AA6063 joined with Copper successfully using Rotary Friction Welding process. Through process study effective process parameters like Friction Pressure, Upset Pressure, Spindle Speed, and Friction Time identified and their effect on weld joint strength were studied.Testing for measuring UTS of friction welded joint conducted. Using DOE tool optimized set process parameters for friction welding identified and their effect on weld joint strength studied experimentally. Maximum UTS of 222.787 MPa for Friction welded joint achieved, bend test also performed on friction welded samples.


1991 ◽  
Vol 41 (10) ◽  
pp. 716-721 ◽  
Author(s):  
Hiroshi YAMAGUCHI ◽  
Koichi OGAWA ◽  
Kazuhiko SAKAGUCHI

2021 ◽  
Author(s):  
Furong Chen ◽  
Yihang Yang ◽  
Nan Li

Abstract 7A52 (Al-Zn-Mg-Cu) alloy is a high-strength aluminum alloy, its welded joints are often accompanied by defects such as poor wear resistance and low fatigue strength. Herein, we try to optimize the welded joint of 7A52 aluminum alloy by using ultrasonic impact treatment (UIT). Generally, the mechanical properties such as microhardness and fatigue strength of the welded joint after UIT will be improved. 7A52 aluminum alloy tandem metal inert gas (MIG) welded joints with UIT time per unit area of 2.5 min, 5 min, 10 min, 15 min, 30 min, and 75 min were studied. Through the surface topography, microstructure observation, and mechanical properties test, the time parameters of excessive treatment, lack of treatment, and proper treatment were selected, and the effects of UIT, excessive treatment, lack of treatment, and proper treatment on fatigue strength were analyzed. Test results show that, the mechanical properties of welded joints after UIT are improved. The proper treatment time is 15min and its fatigue strength is 37.86MPa, respectively under the stress ratio of 0.1. Compared to the original welding condition with a fatigue strength of 28.61MPa, the fatigue strength of the welded joints of 7A52 aluminum alloy increased by 32.33%. The largest percentage of grain size reduction occurs when the UIT is 15 min. Moreover, excessive treatment and lack of treatment will not further refine the grains and optimize the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document