Effect of friction welding condition on joining phenomena, tensile strength, and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel

2017 ◽  
Vol 25 ◽  
pp. 116-125 ◽  
Author(s):  
M. Kimura ◽  
K. Suzuki ◽  
M. Kusaka ◽  
K. Kaizu
2020 ◽  
Vol 17 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Taiwo Ebenezer Abioye ◽  
Igbekele Samson Omotehinse ◽  
Isiaka Oluwole Oladele ◽  
Temitope Olumide Olugbade ◽  
Tunde Isaac Ogedengbe

Purpose The purpose of this study is to determine the effects of post-annealing and post-tempering processes on the microstructure, mechanical properties and corrosion resistance of the AISI 304 stainless steel gas metal arc weldment. Design/methodology/approach Gas metal arc welding of AISI 304 stainless steel was carried out at an optimized processing condition. Thereafter, post-annealing and post-tempering processes were performed on the weldment. The microstructure, mechanical and electrochemical corrosion properties of the post-weld heat treated samples, as compared with the as-welded, were investigated. Findings The as-welded joint was characterized with sub-granular grain structure, martensite formation and Cr-rich carbides precipitates. This made it harder than the post-annealed and post-tempered joints. Because of slower cooling in the furnace, the post-annealed joint contained Cr-rich carbides precipitates. However, the microstructure of the post-tempered joint is more refined and significantly devoid of the carbide precipitates. Post-tempering process improved the elongation (∼23%), tensile (∼10%) and impact (∼31%) strengths of the gas metal arc AISI 304 stainless steel weldment, while post-annealing process improved the elongation (∼20%) and impact strength (∼72%). Owing to the refined grain structure and significant elimination of the Cr-rich carbide precipitates at the joint, the post-tempered joint exhibited better corrosion resistance in 3.5 Wt.% NaCl solution than the post-annealed and the as-welded joints. Originality/value The appropriate post-weld heat treatment that enhances microstructural homogeneity and quality of the AISI 304 gas metal arc welded joint was determined.


2011 ◽  
Vol 117-119 ◽  
pp. 402-408
Author(s):  
Shazarel Shamsudin ◽  
Phoon Chee Yoon

Product with low cost, lightweight and enhanced mechanical properties were the main reasons welding dissimilar materials thrived by most of the industries. The laser welding technique which has high-energy density beam was found suitable of carrying this task. This paper attempts to investigate welding of AISI 304 stainless steel to AISI 1008 steel through Nd:YAG pulse laser method. The main objective of this study was to find out the weldability of these materials and investigate the mechanical properties of the welded butt joints. Peak power, pulse duration and weld speed combinations were carefully selected with the aims of producing weld with a good tensile strength, minimum heat affected zone (HAZ) and acceptable welding profile. Response surface methodology (RSM) approach was adopted as statistical design technique for tensile strength optimization. Statistical based mathematical model was developed to describe effects of each process parameters on the weld tensile strength and for response prediction within the parameter ranges. The microstructure of the weld and heat affected zones were observed via optical microscope. The results indicate the developed model can predict the response within ±9% of error from the actual values.


2018 ◽  
Vol 62 (6) ◽  
pp. 1187-1193 ◽  
Author(s):  
Guilong Wang ◽  
Jinglong Li ◽  
Jiangtao Xiong ◽  
Wei Zhou ◽  
Fusheng Zhang

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1294 ◽  
Author(s):  
Miroslav Sahul ◽  
Ema Tomčíková ◽  
Martin Sahul ◽  
Matej Pašák ◽  
Barbora Ludrovcová ◽  
...  

Deoxidized oxygen free copper C12200, 1 mm in thickness, was welded to 1-mm thick AISI 304 stainless steel with disk laser. The butt-welded joints were produced with different welding parameters. Full factorial design of experiment (DoE) approach consisting of three factors and two levels was utilized. Laser powers used for welding were 1.3 and 1.9 kW and welding speeds of 20 and 30 mm/s. Two beam offsets were tested, namely, 100 μm toward copper side and 200 μm toward AISI 304 steel. It was found that beam offset possesses the largest influence on the welded joints’ tensile strength. Tensile strengths attained values more than 3.7 times higher in comparison to the AISI 304 steel beam offset. When lower laser power was used, the higher tensile strength was attained for copper sheet offset. Higher microhardness was observed when laser beam was offset to AISI 304 steel side. The average microhardness of the weld metal was higher than that of the weaker base material, copper sheet. Energy dispersive X-ray spectroscopy (EDS) analysis confirmed the heterogeneity in elemental composition across the welded joint interface, being lower when laser beam was offset to AISI 304 steel side. On the other hand, the copper content dropped to the average composition of weld metal at the distance of about 140 μm from copper-weld metal interface.


Sign in / Sign up

Export Citation Format

Share Document