7a52 aluminum alloy
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6362
Author(s):  
Xu Liu ◽  
Ruiling Jia ◽  
Huixia Zhang ◽  
Wenhua Cheng ◽  
Xiwei Zhai

The microstructure and texture of materials significantly influence the mechanical properties and fracture behavior; the effect of microstructure in different zones of friction stir-welded joints of 7A52 aluminum alloy on fracture behavior was investigated in this paper. The microstructural characteristics of sections of the welded joints were tested using the electron backscattered diffraction (EBSD) technique. The results indicate that the fracture is located at the advancing side of the thermomechanically affected zone (AS-TMAZ) and the stir zone (SZ) interface. The AS-TMAZ microstructure is vastly different from the microstructure and texture of other areas. The grain orientation is disordered, and the grain shape is seriously deformed under the action of stirring force. The grain size grows unevenly under the input of friction heat, resulting in a large amount of recrystallization, and there is a significant difference in the Taylor factor between adjacent grains and the AS-TMAZ–SZ interface. On the contrary, there are fine and uniform equiaxed grains in the nugget zone, the microstructure is uniform, and the Taylor factor is small at adjacent grains. Therefore, the uneven transition of microstructure and texture in the AS-TMAZ and the SZ provide conditions for crack initiation, which become the weak point of mechanical properties.



2021 ◽  
Author(s):  
Furong Chen ◽  
Yihang Yang ◽  
Nan Li

Abstract 7A52 (Al-Zn-Mg-Cu) alloy is a high-strength aluminum alloy, its welded joints are often accompanied by defects such as poor wear resistance and low fatigue strength. Herein, we try to optimize the welded joint of 7A52 aluminum alloy by using ultrasonic impact treatment (UIT). Generally, the mechanical properties such as microhardness and fatigue strength of the welded joint after UIT will be improved. 7A52 aluminum alloy tandem metal inert gas (MIG) welded joints with UIT time per unit area of 2.5 min, 5 min, 10 min, 15 min, 30 min, and 75 min were studied. Through the surface topography, microstructure observation, and mechanical properties test, the time parameters of excessive treatment, lack of treatment, and proper treatment were selected, and the effects of UIT, excessive treatment, lack of treatment, and proper treatment on fatigue strength were analyzed. Test results show that, the mechanical properties of welded joints after UIT are improved. The proper treatment time is 15min and its fatigue strength is 37.86MPa, respectively under the stress ratio of 0.1. Compared to the original welding condition with a fatigue strength of 28.61MPa, the fatigue strength of the welded joints of 7A52 aluminum alloy increased by 32.33%. The largest percentage of grain size reduction occurs when the UIT is 15 min. Moreover, excessive treatment and lack of treatment will not further refine the grains and optimize the mechanical properties.



2021 ◽  
Vol 8 ◽  
Author(s):  
Deku Zhang ◽  
Xusheng Qian ◽  
Xiaopeng Li ◽  
Kehong Wang

This study investigated the interface morphology, microstructure composition and connection strength of 7A52 aluminum alloy-Al2O3 ceramic brazed joints under heat treatment conditions. Alumina ceramics were first treated with electroless nickel plating, followed by vacuum heat treatment at different temperatures. Then an Al-Si-Mg intermediate layer was placed between the treated alumina ceramic and 7A52 aluminum alloy for brazing under the conditions of welding temperature 590, holding time 1h, pressure 2 MPa. Results showed that when heat treatment was performed at 350°C and below, the nickel-plated metal had an amorphous structure, and when performed at 400°C, the nickel-plated layer had a crystalline structure and the brittle phase Ni3P was precipitated. When the heat treatment temperature was 350°C, the joint shear strength reached the maximum, which was 68.7 MPa.









Author(s):  
Hao Huang ◽  
Bing Yang ◽  
Jingfang Mo ◽  
Yangmo Geng ◽  
Honggang Zhou ◽  
...  


2014 ◽  
Vol 633-634 ◽  
pp. 821-825
Author(s):  
Xiao Ming Wang ◽  
Sheng Zhu ◽  
Zhi Hao Zhao ◽  
Qi Wei Wang ◽  
Xiao Dong Zhao

5183 welding wire micro-alloyed using Sc, Zr, Er and automatic MIG welding system applied to weld 7A52 aluminum alloy. Optical microscope and universal tensile testing machine utilized to investigate microstructure and tensile property of welded joint, respectively. The results indicated that welded zone and fused zone was composed of uniform isometric crystal and tiny isometric dendrite crystal when the welded joint was fabricated by using 5183 welding wire micro-alloyed via rare earth element, respectively. Tensile strength and specific elongation of welded zone was improved utmostly when the 5183 welding wire micro-alloyed treatment via single Sc or Zr, respectively. Owing to mirco-alloyed treatment of 5183 welding wire by using Sc, Zr or Er, a large number of Al3Sc, Al3Zr, Al3Er granules had generated in micro-poll, which played heterogeneous nucleation role and refined microstructure of welded zone. Meanwhile, there emerged nanoscaled A13Sc, A13Zr, Al3Er strengthening phase dispersed in welded zone, which had led welded joint to exhibit exclent tensile strength.



Sign in / Sign up

Export Citation Format

Share Document