scholarly journals Numerical Analysis of Premixed Charge Compression Ignition by the Combined Model of CFD and Chemical Kinetics

2003 ◽  
Vol 2003.78 (0) ◽  
pp. _3-37_-_3-38_
Author(s):  
Masao SEKI ◽  
Katsuya SAIJYO ◽  
Kazuie NISHIWAKI ◽  
Yoshinobu YOSHIHARA
2006 ◽  
Vol 2006.81 (0) ◽  
pp. _1-24_
Author(s):  
Daisuke YOSHIHARA ◽  
Sang-kyu KIM ◽  
Atsutaka MATSUMOTO ◽  
Kazuma ITO ◽  
Yogo TAKADA ◽  
...  

2019 ◽  
Vol 16 (3) ◽  
pp. 341-350 ◽  
Author(s):  
Hariram Venkatesan ◽  
Godwin John J. ◽  
Seralathan Sivamani ◽  
Micha Premkumar T.

Purpose The purpose this experimentation is to study the combustion characteristics of compression ignition engine fuelled with mineral diesel. The reason behind the numerical simulation is to validate the experimental results of the combustion characteristics. Design/methodology/approach The numerical analysis was carried out in this study using MATLAB Simulink, and the zero dimensional combustion model was applied to predict the combustion parameters such as in cylinder pressure, pressure rise rate and rate of heat release. Findings Incorporating the dynamic combustion duration with respect to variable engine load in the zero dimensional combustion model using MATLAB Simulink reduced the variation of experimental and numerical outputs between 5.5 and 6 per cent in this analysis. Research limitations/implications Validation of the experimental analysis is very limited. Investigations were performed using zero dimensional combustion model, which is the very appropriate for analysing the combustion characteristics. Originality/value Existing studies assumed that the combustion duration period as invariant in their numerical analysis, but with the real time scenario occurring in CI engine, that is not the case. In this analysis, mass fraction burnt considering the dynamic combustion duration was incorporated in the heat transfer model to reduce the error variation between experimental and numerical studies.


2010 ◽  
Vol 11 (2) ◽  
pp. 89-98 ◽  
Author(s):  
Y Murata ◽  
Y Nishio ◽  
J Kusaka ◽  
Y Daisho ◽  
D Kawano ◽  
...  

1996 ◽  
Vol 06 (05) ◽  
pp. 867-887 ◽  
Author(s):  
A.R. CHAMPNEYS ◽  
YU. A. KUZNETSOV ◽  
B. SANDSTEDE

This paper presents extensions and improvements of recently developed algorithms for the numerical analysis of orbits homoclinic to equilibria in ODEs and describes the implementation of these algorithms within the standard continuation package AUTO86. This leads to a kind of toolbox, called HOMCONT, for analysing homoclinic bifurcations either as an aid to producing new theoretical results, or to understand dynamics arising from applications. This toolbox allows the continuation of codimension-one homoclinic orbits to hyperbolic or non-hyperbolic equilibria as well as detection and continuation of higher-order homoclinic singularities in more parameters. All known codimension-two cases that involve a unique homoclinic orbit are supported. Two specific example systems from ecology and chemical kinetics are analysed in some detail, allowing the reader to understand how to use the the toolbox for themselves. In the process, new results are also derived on these two particular models.


2005 ◽  
Vol 6 (5) ◽  
pp. 497-512 ◽  
Author(s):  
A Babajimopoulos ◽  
D N Assanis ◽  
D L Flowers ◽  
S M Aceves ◽  
R P Hessel

Modelling the premixed charge compression ignition (PCCI) engine requires a balanced approach that captures both fluid motion as well as low- and high-temperature fuel oxidation. A fully integrated computational fluid dynamics (CFD) and chemistry scheme (i.e. detailed chemical kinetics solved in every cell of the CFD grid) would be the ideal PCCI modelling approach, but is computationally very expensive. As a result, modelling assumptions are required in order to develop tools that are computationally efficient, yet maintain an acceptable degree of accuracy. Multi-zone models have been previously shown accurately to capture geometry-dependent processes in homogeneous charge compression ignition (HCCI) engines. In the presented work, KIVA-3V is fully coupled with a multi-zone model with detailed chemical kinetics. Computational efficiency is achieved by utilizing a low-resolution discretization to solve detailed chemical kinetics in the multi-zone model compared with a relatively high-resolution CFD solution. The multi-zone model communicates with KIVA-3V at each computational timestep, as in the ideal fully integrated case. The composition of the cells, however, is mapped back and forth between KTVA-3V and the multi-zone model, introducing significant computational time savings. The methodology uses a novel re-mapping technique that can account for both temperature and composition non-uniformities in the cylinder. Validation cases were developed by solving the detailed chemistry in every cell of a KIVA-3V grid. The new methodology shows very good agreement with the detailed solutions in terms of ignition timing, burn duration, and emissions.


Sign in / Sign up

Export Citation Format

Share Document