503 Inline rolling of strip cast by a vertical type high speed twin roll caster for aluminum alloy

2013 ◽  
Vol 2013.88 (0) ◽  
pp. _5-3_
Author(s):  
Yusuke Ymasaki ◽  
Masaaki Hirano ◽  
Toshio Haga
2010 ◽  
Vol 139-141 ◽  
pp. 477-480
Author(s):  
Ryoji Nakamura ◽  
Shuya Hanada ◽  
Shinji Kumai ◽  
Hisaki Watari

An inline hot rolling was operated on 5182 aluminum alloy strip cast using a vertical type high speed caster (VHSTRC) at the speed of 60 m/min. A porosity existing at center line of the thickness and a ripple mark on the surface, these are typical defects of the strip cast by the VHSTRC, could be improved by the inline rolling. The rolling speed was as same as the roll-casting-speed of 60m/min. The temperature of the strip, when the inline rolling was operated, was 450oC. The reduction of the strip of the inline rolling was 35%.


2010 ◽  
Vol 146-147 ◽  
pp. 1108-1113 ◽  
Author(s):  
Ryoji Nakamura ◽  
Yusuke Shiotsu ◽  
Kosuke Komeda ◽  
Shinji Kumai ◽  
Hisaki Warari

Porosity occurred in the 5182 aluminum alloy strip cast by a vertical type high speed twin roll caster. The porosity was caused by high-roll-speed and low-roll-load. Improvement of the porosity was tried by a scraper. The scraper was mounted on the roll, and the scraper was moveable depend on the thickness of the solidified layer on the roll. The scraper scribed the semisolid layer to improve the porosity. The scraper was useful to decrease the porosity of roll cast 5182 aluminum alloy strip.


2010 ◽  
Vol 154-155 ◽  
pp. 1544-1548 ◽  
Author(s):  
Kosuke Komeda ◽  
Ryoji Nakamura ◽  
Shinji Kumai

The disadvantages of the conventional twin-roll caster for aluminum alloy are low casting speeds and limited choices of alloys that are castable by this processing. It is known that strip casting of aluminum alloy 5182 is very difficult because of their wider freezing zones. The vertical-type high-speed twin-roll caster used in the present study was devised to overcome these disadvantages. Features of the high speed twin roll casters are as below. Mild steel rolls were used in order to increase the casting speed and to be made at a lower equipment cost. Roll coating is produced in casting of Al-Mg alloy. Therefore lubricant, that resists heat transfer, was not used in the present study. Heat transfer between melt and the roll was improved by hydrostatic pressure of the melt. Low superheat casting was carried out in order to improve microstructure of the strip. In the present study, effectiveness of a high-speed twin roll caster for recycling aluminum alloy was investigated. The effects of the high-speed twin roll caster on alleviating the deterioration of mechanical properties by impurities were investigated. Properties of the cast strip were investigated by metalography, a tension test, and a deep drawing test.


2018 ◽  
Vol 792 ◽  
pp. 8-15
Author(s):  
Toshio Haga ◽  
Kentaro Okamura ◽  
Hisaki Warari ◽  
Shinichi Nishida

The effect of the base strip temperature on the bonding between base strip and overlay strips in a three-layer clad strip cast by a vertical-type tandem twin roll caster was investigated. The base strip was 3003 aluminum alloy and the overlay strip was 4045 aluminum alloy. The bonding was investigated for base strip temperatures ranging from 200 °C to 550 °C. The bonding condition was investigated by cold-rolling, bending-to-failure test and tensile shear test. The shear stress increased with the base strip temperature. Sound bonding was achieved at base strip temperatures higher than 450 °C. The results of this study indicated that the second caster is not required to be set below the first roll caster.


2021 ◽  
Vol 1042 ◽  
pp. 53-59
Author(s):  
Toshio Haga ◽  
Tomoya Okada ◽  
Shinichi Nishida ◽  
Hisaki Watari

When a strip of Al-Si alloy with an Si content of 1% was cast using a vertical-type high-speed twin-roll caster, cracks form in its surface. The effects of the pouring method, the shape and position of the nozzle, and the roll surface texture on surface crack formation were evaluated with a roll caster. The rolls were made of a copper alloy, and the roll speed was 30 m/min. The as-cast strips were bent to investigate the degree of crack formation, and the outer surface of the strips was observed without magnification and with a stereomicroscope to determine the influence of the pouring method, the shape and position of the nozzle, and the roll surface. A roll machined to form V-shaped grooves 0.4 mm deep on the surface of the strips was most useful for reducing surface cracking. Changing the shape of the nozzle tip was second-most effective. There was a clear correlation between the roll surface condition and surface cracking in the Al-Si strip.


Sign in / Sign up

Export Citation Format

Share Document