M415 Characteristics of Heat Transfer and Fluid Flow in Horizontal Boiling Two-Phase Flow under Low-Velocity Condition

2015 ◽  
Vol 2015.90 (0) ◽  
pp. 325
Author(s):  
Mayu NISHIOKA
2001 ◽  
Author(s):  
S. Bautista-Fragoso ◽  
Yuri V. Fairuzov

Abstract A numerical model of transient two-phase flow and conjugate heat transfer in a vertical pipeline is presented in the present paper. The drift-flux model is used to describe the fluid flow in the pipeline. The modeling of transient conjugate heat transfer is based on a mathematical formulation in which the pipe wall and the fluid are assumed to be in local thermal equilibrium. The effect of the thermal capacity of the pipe wall is taken into account by an additional term in the energy equation for the fluid flow. Such an approach allows significant simplifying the problem and reducing the computer running time. Numerical simulations of blowdown of a pipeline/riser system were performed. The effect of the pipe wall on the flow behavior was investigated.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Zahra Baniamerian ◽  
Ramin Mehdipour ◽  
Cyrus Aghanajafi

Efficiently employing two-phase flows for cooling objectives requires comprehensive knowledge of their behavior in different conditions. Models, capable of predicting heat transfer and fluid flow trends in this area, are of great value. Numerical/analytical models in the literature are one-dimensional models involving with many simplifying assumptions. These assumptions in most cases include neglecting some mechanisms of mass transfer in two-phase flows. This study is devoted to developing an analytical two-dimensional model for simulation of fluid flow and mass transfer in two-phase flows considering the all mass transfer mechanisms (entrainment, evaporation, deposition and condensation). The correlation employed for modeling entrainment in this study, is a semiempirical correlation derived based on physical concept of entrainment phenomenon. Emphasis is put on the annular flow pattern of liquid vapor two-phase flow since this regime is the last encountered two-phase regime and has a higher heat transfer coefficient among other two-phase flow patterns. Attempts are made to employ the least possible simplification assumptions and empirical correlations in the modeling procedure. The model is then verified with experimental models of Shanawany et al., Stevanovic et al. and analytical model of Qu and Mudawar. It will be shown, considering pressure variations in both radial and axial directions along with applying our semiempirical entrainment correlation has improved the present analytical model accuracy in comparison with the accuracy of available analytical models.


2016 ◽  
Vol 831 ◽  
pp. 92-103 ◽  
Author(s):  
Henryk Bieliński ◽  
Jaroslaw Mikielewicz

The present paper offers an analysis of heat transfer and fluid flow in two phase thermosyphon loop with minichannels. A one-dimensional model of two-phase flow and heat transfer in a closed thermosyphon loop with minichannels was examined. The created general model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The separate two-phase flow model is used in calculations. The numerical results obtained for the selected heater and cooler using the general model of thermosyphon loop indicate that the mass flux increases with increasing length of the heated section and decreases with increasing length of the cooled section of the loop. It was found that the heat transfer coefficient for flow boiling and flow condensation in the steady state increases with increasing heat flux in the heater and cooler with minichannels, respectively. The design and configuration of heaters and coolers has a considerable impact on the efficiency of thermosyphon loop. These factors make it possible to optimize the computer processor cooling.


Sign in / Sign up

Export Citation Format

Share Document