Nitrogen Oxides Emission from Stationary Combustion Processes and Its Control Techniques : Control of NOx in Boiler Flue Gases by the Two Stage-Flue Gas Recirculation Method(Minor Special Issue on Interdisciplinary Problems in the Energy Conversion Engineering)

1972 ◽  
Vol 75 (643) ◽  
pp. 1293-1300
Author(s):  
Katsuya NAGATA
Author(s):  
Maria Jędrusik ◽  
Dariusz Łuszkiewicz ◽  
Arkadiusz Świerczok

The chapter presents the issue of reducing mercury and nitrogen oxides emissions from the flue gas of coal-fired boilers. The issue is particularly relevant due to the stricter regulations regarding exhaust gas purity. A brief review of the methods for reducing Hg and NOx emissions has been made, pointing out their pros and cons. Against this background, the results of the authors’ own research on the injection of selected oxidants into flue gases to remove both of these pollutants are presented. The injection of sodium chlorite solution into the flue gas (400 MWe lignite fired unit) upstream the wet flue gas desulphurization (WFGD) absorber contributed to the oxidation of both metallic mercury and nitric oxide and enhanced their removal efficiency. The results of tests on lignite and hard coal flue gases indicate that in order to reduce the unfavorable phenomenon of mercury re-emission from WFGD absorbers, in some cases, it is necessary to add selected chemical compounds (e.g., sulfides) to the desulfurization system. The results of field tests for flue gas from lignite (400 MWe unit) and hard coal-fired boilers (195 and 220 MWe units) confirmed the usefulness of oxidizer injection technology to reduce mercury emissions below the level required by BAT conclusions.


2019 ◽  
Vol 9 (4) ◽  
pp. 27-32
Author(s):  
Olga A. BALANDINA ◽  
Svetlana M. PURING

The analysis of the values of the concentrations of the formed nitrogen oxides and the temperatures of the jet plume under various conditions of mixture formation is carried out. The plots of the distribution of torch temperatures and concentrations of nitric oxide in the calculated area for oxidizer temperatures of 20, 60, 100, 150, and 200 ° C were obtained and analyzed. Mathematical modeling of the gaseous fuel combustion process was carried out using the FlowVision software package. An analysis of the results showed that a decrease in the temperature of the air supplied as an oxidizing agent leads to a significant decrease in the concentration of nitrogen oxides in flue gases, while not significantly affecting the change in the flame temperature. The research results can be used to solve the problems of optimizing boiler plants, in order to reduce harmful flue gas emissions. Further modeling is planned to determine the dependence of the influence of various factors on the degree of formation of nitrogen oxides in the flue gases of boiler plants.


Sign in / Sign up

Export Citation Format

Share Document