Environmental Emissions
Latest Publications


TOTAL DOCUMENTS

8
(FIVE YEARS 8)

H-INDEX

0
(FIVE YEARS 0)

Published By Intechopen

9781839685101, 9781839685118

Author(s):  
Rakhi Tailor ◽  
Yogesh Kumar Vijay ◽  
Minal Bafna

The present chapter covers the production and properties of carbon soot nanoparticles (CSNPCs) and their doped carbon soot polymer nanocomposites (CSPNCs). The first part of this chapter will provide a brief introduction of carbon soot, its morphology, production and synthesis methods. The second part will explain the investigation of carbon soot nanoparticles by flame deposition method and their properties. The third part will provide a short knowledge on polymer nanocomposites (PNCs) and their processing methods. The last part will illustrate the production of carbon soot polymer nanocomposites by solution casting method and their important properties. At the end, the chapter concludes with future scopes.


Author(s):  
Aniela Matuszewska ◽  
Maria Czaja

The applicability of the fluorescence techniques to identify the polycyclic aromatic hydrocarbons (PAHs) in environmental samples is presented. The technique of synchronous fluorescence enabled the identification of the PAHs series containing 2–6 condensed rings in urban airborne particulate matter from Upper Silesia industrial region in Poland. The results obtained by synchronous and conventional fluorescence measurements have been confirmed by those from gas chromatography-mass spectrometry. As the air sample was taken in summer season, the main source of pollution by PAHs component seems to be transport – the exhaust gases from motor vehicles.


Author(s):  
Farzaneh Hajirasouliha ◽  
Dominika Zabiegaj

Human health has been affected adversely by air pollution as a serious environmental challenge. Ambient (outdoor) air pollution mainly resulted from human activities (e.g., fuel combustion, heat generation, industrial facilities) causes 4.2 million deaths every year. Moreover, each year, 3.8 million people die from indoor air pollution which means household exposure to smoke from fuels and dirty cook stoves. They are the risks of stroke, heart attack, lung disease, or cancer that resulted from air pollution which assaults our brain, heart, and lungs using its invisible weapons named particulate matter (PM). These inhalable particles are of a nanoscale or microscale size. Upon inhalation, the air with its components enters the human body through the respiratory system. The lungs are the responsible organs for gas exchange with blood. Inhaled particles, such as silica, organic compounds, and metallic dusts, have toxic effects on our pulmonary system. For example, the accumulation of nanoparticles in the kidneys, liver, spleen, and central nervous system through the penetration of the epithelial barriers in the lungs has been observed. The purpose of this chapter is to describe the toxic effects of air particles on the different organs in the human body and to introduce some of the adverse effects of air pollution on human health.


Author(s):  
Rabia Munsif ◽  
Muhammad Zubair ◽  
Ayesha Aziz ◽  
Muhammad Nadeem Zafar

Air of cities especially in the developing parts of the world is turning into a serious environmental interest. The air pollution is because of a complex interaction of dispersion and emission of toxic pollutants from manufactories. Air pollution caused due to the introduction of dust particles, gases, and smoke into the atmosphere exceeds the air quality levels. Air pollutants are the precursor of photochemical smog and acid rain that causes the asthmatic problems leading into serious illness of lung cancer, depletes the stratospheric ozone, and contributes in global warming. In the present industrial economy era, air pollution is an unavoidable product that cannot be completely removed but stern actions can reduce it. Pollution can be reduced through collective as well as individual contributions. There are multiple sources of air pollution, which are industries, fossil fuels, agro waste, and vehicular emissions. Industrial processes upgradation, energy efficiency, agricultural waste burning control, and fuel conversion are important aspects to reducing pollutants which create the industrial air pollution. Mitigations are necessary to reduce the threat of air pollution using the various applicable technologies like CO2 sequestering, industrial energy efficiency, improving the combustion processes of the vehicular engines, and reducing the gas production from agriculture cultivations.


Author(s):  
Olayemi Fehintola Awopeju

Almost half of the world population rely on solid (biomass fuel and coal) for cooking, heating and lightning purpose. The resultant exposure to fine particulate matter from household air pollution is the seventh-largest risk factor for global burden of disease causing between 2.6 and 3.8 million premature deaths per year. The health effect ranges from cardiovascular, respiratory, neurocognitive and reproductive health effect. The most important are cardiovascular and respiratory health effects; others are the risk of burns and cataract in the eyes. Biomass fuel is any living or recently living plant and animal-based material that is burned by humans as fuels, for example, wood, dried animal dung, charcoal, grass and other agricultural residues. Biomass fuels are at the low end of the energy ladder in terms of combustion efficiency and cleanliness. Incomplete combustion of biomass contributes majorly to household air pollution and ambient air pollution. A large number of health-damaging air pollutants are produced during the incomplete combustion of biomass. These include respirable particulate matter, carbon monoxide, nitrogen oxides, formaldehyde, benzene, 1, 3 butadiene, polycyclic aromatic hydrocarbons (PAHs), and many other toxic organic compounds. In this article, health effects of biomass fuel use will be described in details highlighting the most affected systems and organs of the body.


Author(s):  
David Galán Madruga

An air quality monitoring network (AQMN) is a basic piece of environmental management due to that it satisfies the major role in monitoring of environment emissions, in special relevance to target air pollutants. An adequate installation would lead to support high efficiency of the network. Therefore, AQMN pre-layout should be considered as an essential factor in regarding with the location of fixed measurement stations within AQMN, as the minimum number of sampling points. Nevertheless, once AQMN has been already installed, and given that the spatial air pollutants pattern can vary along time, an assessment of the AQMN design would be addressed in order to identify the presence of potential redundant fixed monitoring stations. This approach would let to improve the AQMN performance, reduce maintenance costs of the network and consolidate the investment on those more efficient fixed stations. The chapter includes aspects relative to air pollutants measured by networks, their representativeness, limitations, importance, and the future needs. It ponders the need of re-assessment of the AQMN layout for assuring (i) a right evaluation of the human being exposure to atmospheric pollutants and controlling the environmental emissions into the atmosphere and (ii) an adequate performance of the network along time.


Author(s):  
Maria Jędrusik ◽  
Dariusz Łuszkiewicz ◽  
Arkadiusz Świerczok

The chapter presents the issue of reducing mercury and nitrogen oxides emissions from the flue gas of coal-fired boilers. The issue is particularly relevant due to the stricter regulations regarding exhaust gas purity. A brief review of the methods for reducing Hg and NOx emissions has been made, pointing out their pros and cons. Against this background, the results of the authors’ own research on the injection of selected oxidants into flue gases to remove both of these pollutants are presented. The injection of sodium chlorite solution into the flue gas (400 MWe lignite fired unit) upstream the wet flue gas desulphurization (WFGD) absorber contributed to the oxidation of both metallic mercury and nitric oxide and enhanced their removal efficiency. The results of tests on lignite and hard coal flue gases indicate that in order to reduce the unfavorable phenomenon of mercury re-emission from WFGD absorbers, in some cases, it is necessary to add selected chemical compounds (e.g., sulfides) to the desulfurization system. The results of field tests for flue gas from lignite (400 MWe unit) and hard coal-fired boilers (195 and 220 MWe units) confirmed the usefulness of oxidizer injection technology to reduce mercury emissions below the level required by BAT conclusions.


Author(s):  
Richard Viskup ◽  
Christoph Wolf ◽  
Werner Baumgartner

In this research, we applied laser-plasma spectroscopy technique for the measurement of trace chemical elements in the exhaust emissions generated from in-use diesel engine passenger vehicles. We use high resolution laser-induced breakdown spectroscopy (LIBS) technique for diagnostics of soot and particulate matter (PM). Here we analysed soot and PM, extracted from exhaust manifold part, from different passenger vehicles that are used in daily life environment. The main aim of this study is to reveal the trace chemical elements in different PM matrices. The presence of trace elements in exhaust emissions can originate from different sources: from injected fuel type and fuel additives, engine lubricants, engine combustion process, incomplete catalytic reaction, inefficiency or wear out of PM filtering devices, dysfunctions or failures of engine or vehicle or even information related to polluted intake air.


Sign in / Sign up

Export Citation Format

Share Document