S116053 Coordinate Measuring Machine based on Parallel Kinematic Mechanism : Kinematic calibration using ball plate and compensation for machine frame deformation

2012 ◽  
Vol 2012 (0) ◽  
pp. _S116053-1-_S116053-5
Author(s):  
Takeshi KOZATO ◽  
Takaaki OIWA ◽  
Junichi ASAMA
Author(s):  
Chunyang Han ◽  
Yang Yu ◽  
Zhenbang Xu ◽  
Xiaoming Wang ◽  
Peng Yu ◽  
...  

This paper presents a kinematic calibration of a 6-RRRPRR parallel kinematic mechanism with offset RR-joints that would be applied in space positioning field. In order to ensure highly accurate and highly effective calibration process, the complete error model, which contains offset universal joint errors, is established by differentiating inverse kinematic model. A calibration simulation comparison with non-complete error model shows that offset universal joint errors are crucial to improve the calibration accuracy. Using the error model, an optimal calibration configuration selection algorithm is developed to determine the least number of measurement configurations as well as the optimal selection of these configurations from the feasible configuration set. To verify the effectiveness of kinematic calibration, a simulation and experiment were performed. The results show that the developed approach can effectively improve accuracy of a parallel kinematic mechanism with relatively low number of calibration configurations.


2013 ◽  
Vol 816-817 ◽  
pp. 821-824
Author(s):  
Xue Mei Niu ◽  
Guo Qin Gao ◽  
Zhi Da Bao

Kinematic analysis plays an important role in the research of parallel kinematic mechanism. This paper addresses a novel forward kinematic solution based on RBF neural network for a novel 2PRRR-PPRR redundantly actuated parallel mechanism. Simulation results illustrate the validity and feasibility of the kinematic analysis method.


Sign in / Sign up

Export Citation Format

Share Document