J056042 Impact Analysis of Design Parameters on Performance of Stand-Alone System using Straight-Wing Vertical Axis Wind Turbine

2013 ◽  
Vol 2013 (0) ◽  
pp. _J056042-1-_J056042-5
Author(s):  
Tetsuya WAKUI ◽  
Kazushige MATSUO ◽  
Ryohei YOKOYAMA
2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879954
Author(s):  
Soo-Yong Cho ◽  
Sang-Kyu Choi ◽  
Jin-Gyun Kim ◽  
Chong-Hyun Cho

In order to augment the performance of vertical axis wind turbines, wind power towers have been used because they increase the frontal area. Typically, the wind power tower is installed as a circular column around a vertical axis wind turbine because the vertical axis wind turbine should be operated in an omnidirectional wind. As a result, the performance of the vertical axis wind turbine depends on the design parameters of the wind power tower. An experimental study was conducted in a wind tunnel to investigate the optimal design parameters of the wind power tower. Three different sizes of guide walls were applied to test with various wind power tower design parameters. The tested vertical axis wind turbine consisted of three blades of the NACA0018 profile and its solidity was 0.5. In order to simulate the operation in omnidirectional winds, the wind power tower was fabricated to be rotated. The performance of the vertical axis wind turbine was severely varied depending on the azimuthal location of the wind power tower. Comparison of the performance of the vertical axis wind turbine was performed based on the power coefficient obtained by averaging for the one periodic azimuth angle. The optimal design parameters were estimated using the results obtained under equal experimental conditions. When the non-dimensional inner gap was 0.3, the performance of the vertical axis wind turbine was better than any other gaps.


2019 ◽  
Vol 2019.25 (0) ◽  
pp. 18E16
Author(s):  
Hiroshi OKUBO ◽  
Ryo HATAKEYAMA ◽  
Hidemi ONODERA ◽  
Tsuyoshi SATO ◽  
Hironori FUJII ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document