FEM Stress Analysis and Sealing Performance in Bolted Flange Connection with Cover of Pressure Vessel Subjected to Internal Pressure

2003 ◽  
Vol 2003.4 (0) ◽  
pp. 71-72
Author(s):  
Toshiyuki SAWA ◽  
Rie HIGUCHI
Author(s):  
Toshiyuki Sawa ◽  
Rie Higuchi

The stresses of a bolted flange connection with a cover of pressure vessel (CPV) in which a spiral wound gasket is inserted, under internal pressure are analyzed taking account a hysteresis of the gasket by using the finite element method (FEM). The leakage tests were also conducted using an actual bolted flange connection with a CPV with a spiral wound gasket. Using the contact stress distribution of the bolted flange connection with a CPV under internal pressure and the tightness parameter, the values of the new gasket constants were obtained by taking into account the changes in the contact stress. A difference in the new gasket constants between the estimated values obtained from the actual bolted flange connection with a CPV and the values obtained by the PVRC procedure was small. In addition, a method to determine the bolt preload for a given tightness parameter was demonstrated. The obtained results of the bolt preload for the bolted flange connection with a CPV were in a fairly good agreement with those obtained by the PVRC procedure under a lower pressure application. However, a difference in the bolt preload was about 7% when the internal pressure was increased.


Author(s):  
Toshiyuki Sawa ◽  
Rie Higuchi

The stresses of a bolted flange connection with a cover of pressure vessel (CPV) in which a spiral wound gasket is inserted, under internal pressure are analyzed taking account a hysteresis of the gasket using the finite element method (FEM). The leakage tests were also conducted for an actual bolted flange connection with a CPV and a spiral wound gasket. Using the calculated contact gasket stress distribution of the bolted flange connection with the CPV under internal pressure and the tightness parameter, the values of the new gasket constants were obtained by taking into account the changes in the contact gasket stress. A difference in the new gasket constants between the estimated values obtained from the actual bolted flange connection with the CPV and the values obtained by the PVRC procedure was small. In addition, a method to determine the bolt preload for a given tightness parameter was demonstrated. The obtained results of the bolt preload for the bolted flange connection with the CPV were in a fairly good agreement with those obtained by the PVRC procedure under a lower pressure application. However, a difference in the bolt preload was about 7% when the internal pressure was increased.


Author(s):  
Satoshi Nagata ◽  
Toshiyuki Sawa ◽  
Seiichi Hamamoto

It has been well known that the scatter in axial bolt forces of bolted flange connections tightened by torque control methods is substantial. In evaluating the sealing performance of a bolted flange connection with a gasket subjected to internal pressure, it is necessary to know the contact gasket stress distributions due to the scatter of the axial bolt forces in the flange connections tightened by torque control methods. This paper deals with the leakage of a bolted flange connection with a cover of pressure vessel including a spiral wound gasket tightened by a torque wrench. The scatter in the axial bolt forces was measured using strain gauges attached at the shank of bolts. The amount of leakage from the bolted flange connection with cover of pressure vessel was measured by so-called pressure decay method. The gas employed was Helium. From the measured leakage, the actual assembly efficiency is examined. The eight bolts and nuts were tightened according to the ASME PCC-1 method and Japanese method developed by High Pressure Institute (HPI). The difference in the bolt preload was shown between the ASME method and the HPI method. The contact gasket stress distributions at the interface of the flange connection with the gasket were calculated under the measured axial bolt forces by means of finite element analysis. Using the calculated gasket contact stress distribution, the amount of gas leakage was estimated. The estimated gas leakage was compared with the measured results.


Author(s):  
Toshiyuki Sawa ◽  
Satoshi Nagata ◽  
Yosuke Akita

The stresses of a bolted flange connection with a cover of pressure vessel (CPV) in which a spiral wound gasket is inserted, under internal pressure are analyzed taking account a hysteresis of the gasket using the axi-symmetrical theory of elasticity as a three-body contact problem. In addition, for the verification of the analyses, finite-element calculations were also done. The Leakage tests were conducted for an actual bolted flange connection with a CPV and a spiral wound gasket. Using the calculated contact gasket stress distribution of the bolted flange connection with the CPV under internal pressure and the tightness parameter, the values of the new gasket constants were obtained by taking into account the changes in the contact gasket stress. A difference in the new gasket constants between the estimated values obtained from the actual bolted flange connection with the CPV and the values obtained by the PVRC procedure was small. In addition, a method to determine the bolt preload for a given tightness parameter was demonstrated. The obtained results of the bolt preload for the bolted flange connection with the CPV were in a fairly good agreement with those obtained by the PVRC procedure under a lower pressure application. However, a difference in the bolt preload was about 7% when the given tightness parameter was increased.


Author(s):  
Toshiyuki Sawa ◽  
Ryo Kurosawa ◽  
Yasuaki Tatsumi

Bolted joints with gaskets such as non-circular flange connections have been widely used in mechanical structures, nuclear and chemical industry, and so on. They are usually used under internal pressure as well as other loadings such as thermal, impact loadings and so on. In designing the non-circular flange connections with gaskets, it is important to evaluate the sealing performance of the non-circular flange connections with gaskets subjected to internal pressure. An important issue is how to evaluate the sealing performance in the box-shape bolted flange connections by using the contact gasket stress distributions at the interfaces, how to reduce a number of bolt and nuts, that is, how to enlarge the bolt pitch, and how to determine the initial clamping bolt force (preload) by using the new gasket constants. In this paper, the stresses of box-shape flange connection with gaskets subjected to an internal pressure are analyzed using the finite element method (FEM), taking account a hysteresis in the stress-strain curves of the gasket. The contact gasket stress distributions when the internal pressure is applied to the connection are analyzed. The leakage tests were conducted using an actual box-shape flange connection with a gasket Using the contact gasket stress distributions at the interfaces under an internal pressure (Helium gas was used) and the amount of the leakage measured in the experiment, the sealing performances are evaluated experimentally and theoretically by changing the bolt pitch in the connections. Discussion is made on the effect of the bolt pitch on the sealing performance in the above connections.


Author(s):  
Toshiyuki Sawa ◽  
Wataru Maezaki

The contact gasket stress distributions of a non-circular flange connection with a compressed asbestos sheet gasket subjected to internal pressure were analyzed taking account a hysteresis of the gasket by using finite element method (FEM). Leakage tests were also conducted using an actual non-circular flange connection with a compressed asbestos sheet gasket under internal pressure. By using the contact gasket stress distributions and the results of the leakage tests, the new gasket constants were calculated. A difference in the new gasket constants between the values obtained from the present study and those by the PVRC procedure was substantial. In addition, a method to determine the initial clamping bolt force (bolt preload) for a given tightness parameter was demonstrated. abstract text here.


Author(s):  
Toshiyuki Sawa ◽  
Yoshio Takagi ◽  
Katsuhiro Yamada

It has been well known that a scatter in axial bolt forces of pipe flange connections tightened by the torque control method is substantial. It is necessary for evaluating the sealing performance of the pipe flange connections with the gaskets subjected to internal pressure to know the contact gasket stress distributions due to the scatter of the axial bolt forces in the connections tightened by the torque control method. Especially, when gases are used in the pipe flange connections with gaskets at a high temperature, it is necessary to evaluate the amount of gas leakage. In this study, when bolts and nuts in a pipe flange connection were tightened using a torque wrench, the axial bolt forces were measured and then the amount of gas leakage in the pipe flange connection at 50,100,150 and 200 °C was measured under internal pressure. Leakage tests were performed using Helium gases. In addition, the thermal stress distributions at the interfaces between pipe flanges and the gasket under heat condition (temperature 50,100,150 and 200 °C) and internal pressure were calculated by using the finite element method (FEM) taking into account hysteresis in the stress-strain curves of a spiral wound gasket. By using the calculated contact stress distributions and the results of the leakage tests, the sealing performance was evaluated.


Sign in / Sign up

Export Citation Format

Share Document