Effect of Surface Conditions of Substrate on Fatigue Properties of Thermally Sprayed Steel with Self Fluxing Alloy

2003 ◽  
Vol 2003.6 (0) ◽  
pp. 161-162
Author(s):  
Hidehiko MAKIDA ◽  
Hiroyuki AKEBONO ◽  
Masahiro FUKUMOTO ◽  
Masao SHIMIZU
1988 ◽  
Vol 49 (C8) ◽  
pp. C8-641-C8-642
Author(s):  
Y. Otani ◽  
H. Miyajima ◽  
S. Chikazumi ◽  
S. Hirosawa ◽  
M. Sagawa

2020 ◽  
Vol 318 ◽  
pp. 01008
Author(s):  
Alina Timmermann ◽  
Mohamed Abdulgader ◽  
Leif Hagen ◽  
Alexander Koch ◽  
Philipp Wittke ◽  
...  

Thermally sprayed protective coatings are applied onto many mechanically stressed components such as support structures, shafts, turbine blades or heat exchangers. In addition to the static or cyclic load, a superimposition with corrosion processes occurs in many cases. Thermal sprayed ZnAl coatings are known for their performant corrosion protection properties. Within this context, the potential of ZnAl-based layer systems was analyzed regarding corrosion fatigue behavior. Therefore, a timeand cost-efficient testing strategy based on a corrosion-superimposed load increase procedure was used to estimate the effects of a corrosive attack during cyclic loading. The investigated coating systems were thermally sprayed and partially post-processed with a Machine Hammer Peening (MHP) operation. This treatment was identified as an appropriate technique for compressing and smoothing coated surfaces. The inter-relationships between the parametrization of the MHP process, the resulting surface integrity, and the estimated corrosion fatigue properties were analyzed. The investigations indicate a positive effect of MHP post-processing operations on the surface properties of the ZnAl-based coating system.


Author(s):  
Yong Zou ◽  
Yida Liu ◽  
Gongming Xin ◽  
Wen Liu ◽  
Lin Cheng

In this study, effects of surface conditions in terms of surface roughness and oxide layer, on adhesion of crystallization fouling on heat transfer surfaces were investigated. The experimental results showed that the surface roughness has no obvious effect on the adhesion of crystallization fouling. The polished sample did not present better anti-fouling properties compared to other rough samples. While the formation of Fe2O3 layer on the surface is proved to be able to accelerate the adhesion of calcite fouling with hexagonal structure, because there are similar crystalline structure and lattice parameter between the Fe2O3 and calcite fouling. Therefore, in order to improve the anti-fouling property of heat transfer surfaces, inhibiting the formation of oxide layer is more important than efforts to improve surface roughness.


1962 ◽  
Vol 13 (3) ◽  
pp. 271-274 ◽  
Author(s):  
K. W. Gunn ◽  
A. R. Woodward

SummaryThe fatigue properties of unmachined extrusions of high-strength aluminium-copper alloys are known to be lower than those of conventional fully-machined test pieces. Work described in this note has shown that the removal of a layer of metal 0·025 in. thick from the surface of B.S. L65-type extrusions results in an increase in fatigue properties to values approaching those obtained from the conventional laboratory test pieces. Because the removal of material from the surface is not always a practical proposition, other methods of improving strength have been examined and the effect of surface compressive stresses has been shown to be beneficial. Sufficient compressive stress can be induced by surface-rolling to increase the fatigue properties to those of conventional specimens, but this method can only be easily applied to round sections and it is suggested that shot-peening or vapour-blasting could be used for more complicated sections.


Sign in / Sign up

Export Citation Format

Share Document