2258 Development of flaw shape imaging method using ultrasonic linear array transducer

2005 ◽  
Vol 2005.1 (0) ◽  
pp. 679-680
Author(s):  
Kazuyuki NAKAHATA ◽  
Sohichi HIROSE
Author(s):  
Guangzhi Dai ◽  
Zhiyong He ◽  
Hongwei Sun

Background: This study is carried out targeting the problem of slow response time and performance degradation of imaging system caused by large data of medical ultrasonic imaging. In view of the advantages of CS, it is applied to medical ultrasonic imaging to solve the above problems. Objective: Under the condition of satisfying the speed of ultrasound imaging, the quality of imaging can be further improved to provide the basis for accurate medical diagnosis. Methods: According to CS theory and the characteristics of the array ultrasonic imaging system, block compressed sensing ultrasonic imaging algorithm is proposed based on wavelet sparse representation. Results: Three kinds of observation matrices have been designed on the basis of the proposed algorithm, which can be selected to reduce the number of the linear array channels and the complexity of the ultrasonic imaging system to some extent. Conclusion: The corresponding simulation program is designed, and the result shows that this algorithm can greatly reduce the total data amount required by imaging and the number of data channels required for linear array transducer to receive data. The imaging effect has been greatly improved compared with that of the spatial frequency domain sparse algorithm.


2014 ◽  
Vol 24 (02) ◽  
pp. 196-200
Author(s):  
Morteza Tahmasebi ◽  
Hamdollah Zareizadeh ◽  
Azim Motamedfar

Abstract Background and Objective: Detection of radiolucent soft-tissue foreign bodies is a challenging problem, which is especially further complicated when retained foreign body is highly suggested by clinicians but radiography is negative. So, blind exploration is sometimes hazardous for patients. The purpose of this study was to determine the accuracy of ultrasonography (USG) in detecting radiolucent soft-tissue foreign bodies in the extremities. Materials and Methods: From November 2011 to January 2012, patients with clinically suspected radiolucent soft-tissue foreign body and negative radiography were evaluated by USG with a 12-MHz linear array transducer. The patients with positive clinical and USG examination were included in our study and underwent exploration or USG removal. Results: Fifty-one patients underwent foreign body removal under ultrasonography-guided or surgical exploration and 47 patients had foreign body (31, 12, 3, and 1 case had thorn, wood, glass, and plastic, respectively). Ultrasound was positive in 50 patients. USG falsely predicted the presence of foreign body in four cases and was falsely negative in one of the cases. Accuracy, sensitivity, and positive predictive value were determined as 90.2%, 97.9%, and 92%, respectively. Conclusions: The real-time high-frequency USG is a highly sensitive and accurate tool for detecting and removing radiolucent foreign bodies which are difficult to be visualized by routine radiography.


2012 ◽  
Author(s):  
Wenfeng Xia ◽  
Daniele Piras ◽  
Michelle Heijblom ◽  
Johan Van Hespen ◽  
Spiridon van Veldhoven ◽  
...  

2020 ◽  
Vol 245 (7) ◽  
pp. 597-605 ◽  
Author(s):  
Tri Vu ◽  
Mucong Li ◽  
Hannah Humayun ◽  
Yuan Zhou ◽  
Junjie Yao

With balanced spatial resolution, penetration depth, and imaging speed, photoacoustic computed tomography (PACT) is promising for clinical translation such as in breast cancer screening, functional brain imaging, and surgical guidance. Typically using a linear ultrasound (US) transducer array, PACT has great flexibility for hand-held applications. However, the linear US transducer array has a limited detection angle range and frequency bandwidth, resulting in limited-view and limited-bandwidth artifacts in the reconstructed PACT images. These artifacts significantly reduce the imaging quality. To address these issues, existing solutions often have to pay the price of system complexity, cost, and/or imaging speed. Here, we propose a deep-learning-based method that explores the Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to reduce the limited-view and limited-bandwidth artifacts in PACT. Compared with existing reconstruction and convolutional neural network approach, our model has shown improvement in imaging quality and resolution. Our results on simulation, phantom, and in vivo data have collectively demonstrated the feasibility of applying WGAN-GP to improve PACT’s image quality without any modification to the current imaging set-up. Impact statement This study has the following main impacts. It offers a promising solution for removing limited-view and limited-bandwidth artifact in PACT using a linear-array transducer and conventional image reconstruction, which have long hindered its clinical translation. Our solution shows unprecedented artifact removal ability for in vivo image, which may enable important applications such as imaging tumor angiogenesis and hypoxia. The study reports, for the first time, the use of an advanced deep-learning model based on stabilized generative adversarial network. Our results have demonstrated its superiority over other state-of-the-art deep-learning methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Changjun Zha ◽  
Yao Li ◽  
Jinyao Gui ◽  
Huimin Duan ◽  
Tailong Xu

Using the characteristics of a moving object, this paper presents a compressive imaging method for moving objects based on a linear array sensor. The method uses a higher sampling frequency and a traditional algorithm to recover the image through a column-by-column process. During the compressive sampling stage, the output values of the linear array sensor are multiplied by a coefficient that is a measurement matrix element, and then the measurement value can be acquired by adding all the multiplication values together. During the reconstruction stage, the orthogonal matching pursuit algorithm is used to recover the original image when all the measurement values are obtained. Numerical simulations and experimental results show that the proposed compressive imaging method not only effectively captures the information required from the moving object for image reconstruction but also achieves direct separation of the moving object from a static scene.


Sign in / Sign up

Export Citation Format

Share Document