A hoveriing Controller Design of a Portable Unmanned Helicopter by System Identification and Model Matching

Author(s):  
C. J Lin ◽  
S Katsuki ◽  
T Shimogawa ◽  
M Iwamura ◽  
H Ozaki
1994 ◽  
Vol 116 (4) ◽  
pp. 800-805
Author(s):  
Jenq-Tzong H. Chan

A numerical technique for control system synthesis based on input-output data is presented. The method is applicable when the system is open-loop stable and redundantly actuated. The major merits of the method are as follows. First, the closed-loop system equation may be arbitrarily assigned. Second, explicit knowledge of an open-loop system model is not needed for controller synthesis. Third, the stability of the synthesized system may be verified during the synthesis process; hence, the workability of the controller is ensured.


Author(s):  
Indrajit Desai ◽  
Abhishek Gupta ◽  
Debraj Chakraborty

Author(s):  
Dwi Pebrianti ◽  
Yong Hooi Hao ◽  
Nur Aisyah Syafinaz Suarin ◽  
Luhur Bayuaji ◽  
Zulkifli Musa ◽  
...  

2019 ◽  
Vol 292 ◽  
pp. 01018
Author(s):  
Murat Akın ◽  
Tankut Acarman

In this study, the discrete-time H∞ model matching problem with integral control by using 2 DOF static output feedback is presented. First, the motivation and the problem is stated. After presenting the notation, the two lemmas toward the discrete-time H∞ model matching problem with integral control are proven. The controller synthesis theorem and the controller design algorithm is elaborated in order to minimize the H∞ norm of the closed-loop transfer function and to maximize the closed-loop performance by introducing the model transfer matrix. In following, the discrete-time H∞ MMP via LMI approach is derived as the main result. The controller construction procedure is implemented by using a well-known toolbox to improve the usability of the presented results. Finally, some conclusions are given.


Author(s):  
Mohammad Hossein Khalesi ◽  
Hassan Salarieh ◽  
Mahmoud Saadat Foumani

In recent years, unmanned aerial systems have attracted great attention due to the electronic systems technology advancements. Among these vehicles, unmanned helicopters are more important because of their special abilities and superior performance. The complex nonlinear dynamic system (caused by main rotor flapping dynamics coupled with the rigid body rotational motion) and considerable effects of ambient disturbance make their utilization hard in actual missions. Attitude dynamics have the main role in helicopter stabilization, so implementing proper control system for attitude is an important issue for unmanned helicopter hovering and trajectory tracking performance. Besides this, experimental utilization of low-cost flight control system for unmanned helicopters is still a challenging task. In this article, dynamic modeling, system identification, and robust control system implementation of roll and pitch dynamics of an unmanned helicopter is performed. A TRex-600E radio-controlled helicopter is equipped with a novel low-cost flight control system designed and constructed based on Raspberry Pi Linux-based microcomputer. Using Raspberry Pi makes this platform simpler to utilize and more time and cost-effective than similar platforms used before. The experiments are performed on a 5-degree-of-freedom testbed. The robust control system is designed based on [Formula: see text] method and is evaluated in real flight tests. The experiment results show that the proposed platform has the ability to successfully control the roll and pitch dynamics of the unmanned helicopter.


Sign in / Sign up

Export Citation Format

Share Document