Possibility as a Photonic Force Sensor with the MIM Structure using Plasmonic Effects

Author(s):  
Kensuke MURAI ◽  
Ryoichi KOSHIKA ◽  
Shinji YAMAI ◽  
Takaomi MATSUTANI
2020 ◽  
Vol 48 (4) ◽  
pp. 287-314
Author(s):  
Yan Wang ◽  
Zhe Liu ◽  
Michael Kaliske ◽  
Yintao Wei

ABSTRACT The idea of intelligent tires is to develop a tire into an active perception component or a force sensor with an embedded microsensor, such as an accelerometer. A tire rolling kinematics model is necessary to link the acceleration measured with the tire body elastic deformation, based on which the tire forces can be identified. Although intelligent tires have attracted wide interest in recent years, a theoretical model for the rolling kinematics of acceleration fields is still lacking. Therefore, this paper focuses on an explicit formulation for the tire rolling kinematics of acceleration, thereby providing a foundation for the force identification algorithms for an accelerometer-based intelligent tire. The Lagrange–Euler method is used to describe the acceleration field and contact deformation of rolling contact structures. Then, the three-axis acceleration vectors can be expressed by coupling rigid body motion and elastic deformation. To obtain an analytical expression of the full tire deformation, a three-dimensional tire ring model is solved with the tire–road deformation as boundary conditions. After parameterizing the ring model for a radial tire, the developed method is applied and validated by comparing the calculated three-axis accelerations with those measured by the accelerometer. Based on the features of acceleration, especially the distinct peak values corresponding to the tire leading and trailing edges, an intelligent tire identification algorithm is established to predict the tire–road contact length and tire vertical load. A simulation and experiments are conducted to verify the accuracy of the estimation algorithm, the results of which demonstrate good agreement. The proposed model provides a solid theoretical foundation for an acceleration-based intelligent tire.


1997 ◽  
Vol 63 (5) ◽  
pp. 664-668 ◽  
Author(s):  
Daizo TAKAOKA ◽  
Akira SAKAGUCHI ◽  
Yoshitoshi MORITA ◽  
Makoto YAMADA ◽  
Tomomi YAMAGUCHI
Keyword(s):  

PIERS Online ◽  
2008 ◽  
Vol 4 (6) ◽  
pp. 625-630 ◽  
Author(s):  
Yu-Yang Feng ◽  
Morten Willatzen
Keyword(s):  

Author(s):  
Sanghvi Anjali S. ◽  
Sahu Vikas ◽  
Shrivastava Sharad Mohan ◽  
◽  
◽  
...  

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Aditya Nugraha ◽  
Masri Bin Ardin

PVDF sensor is a sensor that is often used to measure force, strain, vibration and heat. In this study, PVDF sensors with surface polarization are used to detect cutting forces on the machine. The PVDF sensor that has been polarized on the surface is placed in the chuck part of the engine. Measuring instrumen for testing and calibrating PVDF sensors is oscilloscope with increased loading and reduced axial and tangential directions. After the calibration process, the PVDF sensor was used to measure cutting force on drilling machine, and then the results were compared with the PCB piezotronics force sensor. The PVDF sensor output signal is measured and studied for its voltage using an oscilloscope, where the output signal is compared to the weight given to the PVDF sensor. From the results of these tests indicate that the maximum deviation in axial loading is 0.32V while the tangential loading is 0.31VKeywords. PVDF sensor, Surface polarization, Drilling machine, Cutting force


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2504
Author(s):  
Francisco Javier García Fierros ◽  
Jesús Jaime Moreno Escobar ◽  
Gabriel Sepúlveda Cervantes ◽  
Oswaldo Morales Matamoros ◽  
Ricardo Tejeida Padilla

Deaths due to heart diseases are a leading cause of death in Mexico. Cardiovascular diseases are considered a public health problem because they produce cardiorespiratory arrests. During an arrest, cardiac and/or respiratory activity stops. A cardiorespiratory arrest is rapidly fatal without a quick and efficient intervention. As a response to this problem, the VirtualCPR system was designed in the present work. VirtualCPR is a mobile virtual reality application to support learning and practicing of basic techniques of cardiopulmonary resuscitation (CPR) for experts or non-experts in CPR. VirtualCPR implements an interactive virtual scenario with the user, which is visible by means of employment of virtual reality lenses. User’s interactions, with our proposal, are by a portable force sensor for integration with training mannequins, whose development is based on an application for the Android platform. Furthermore, this proposal integrates medical knowledge in first aid, related to the basic CPR for adults using only the hands, as well as technological knowledge, related to development of simulations on a mobile virtual reality platform by three main processes: (i) force measurement and conversion, (ii) data transmission and (iii) simulation of a virtual scenario. An experiment by means of a multifactorial analysis of variance was designed considering four factors for a CPR session: (i) previous training in CPR, (ii) frequency of compressions, (iii) presence of auditory suggestions and (iv) presence of color indicator. Our findings point out that the more previous training in CPR a user of the VirtualCPR system has, the greater the percentage of correct compressions obtained from a virtual CPR session. Setting the rate to 100 or 150 compressions per minute, turning on or off the auditory suggestions and turning the color indicator on or off during the session have no significant effect on the results obtained by the user.


Sign in / Sign up

Export Citation Format

Share Document