Development of EMG Control System and Haptic Feedback Device for Inducing Agency and Ownership on an Additional Limb

Author(s):  
Nonoka NISHIDA ◽  
Yukiko IWASAKI ◽  
Joi OH ◽  
Takumi HANDA ◽  
Fumihiro KATO ◽  
...  
2021 ◽  
Vol 59 ◽  
pp. 283-298 ◽  
Author(s):  
Claudia González ◽  
J. Ernesto Solanes ◽  
Adolfo Muñoz ◽  
Luis Gracia ◽  
Vicent Girbés-Juan ◽  
...  

2019 ◽  
Author(s):  
M. Syazwan Md Yid ◽  
M. Zubir Suboh ◽  
M. Azlan Abu ◽  
Muhyi Yaakop ◽  
M. K. Talari ◽  
...  
Keyword(s):  

Author(s):  
Heather C. Humphreys ◽  
Wayne J. Book ◽  
James D. Huggins

An advanced backhoe user interface has been developed which uses coordinated control with haptic feedback. Results indicate that the coordinated control provides more intuitive operation that is easy to learn, and the haptic feedback also relays meaningful information back to the user in the form of force signals from digging forces and system limitations. However, results show that the current system has significant problems with biodynamic feedthrough, where the motion of the controlled device excites motion of the operator, resulting in undesirable forces applied to the input device and control performance degradation. This unwanted input is difficult to decouple from the intentional operator input in experiments. This research presents an investigation on the effects of biodynamic feedthrough on this particular backhoe control system, using system identification to empirically define models to represent each component. These models are used for a preliminary simulation study on potential methods for biodynamic feedthrough compensation.


Author(s):  
J. Miles Canino ◽  
Kevin B. Fite

This paper builds on prior investigations of the electromyogram (EMG) control of a single degree-of-freedom (DOF) transfemoral prosthetic limb, but augmented with mechanical haptic feedback of prosthetic limb state. Preliminary studies were conducted where quasi-static and vibratory cutaneous haptic feedback was provided to subjects performing nonweight-bearing motion tracking tasks with the EMG controlled transfemoral prosthesis. The results of these studies showed that the subjects exhibited improved tracking performance when following pseudo-random step commands under EMG control augmented with static and vibratory haptic feedback cues. The work to be discussed in this paper augments the EMG control architecture to foster improved co-contraction of the instrumented antagonist muscle pair. Using the modified EMG control architecture, experimental studies were conducted to investigate the efficacy of two haptic feedback modalities in conveying information pertinent to single-DOF nonweight-bearing sinusoidal motion tracking tasks. The two haptic feedback modalities investigated were quasi-static pressure feedback provided with pneumatic actuation and vibratory feedback provided by a vibrotactile motor array. Able-bodied test subjects were asked to control the prosthetic knee to follow sinusoidal trajectories with and without visual and haptic feedback. Experimental results show that EMG-control performance in tracking sinusoidal trajectories significantly improves in visually devoid environments when haptic feedback in the form of error-based and pacemaking stimulation patterns are presented to the user.


Sign in / Sign up

Export Citation Format

Share Document