E111 Cooling Performance and Sound Characteristics in Double Loop-Tube-Type Thermoacoustic Cooler with Branch Resonator

2015 ◽  
Vol 2015 (0) ◽  
pp. _E111-1_-_E111-2_
Author(s):  
Tomoaki Kyoden ◽  
Yukio Tada ◽  
Yuya ida
2016 ◽  
Vol 2016.65 (0) ◽  
pp. _308-1_-_308-2_
Author(s):  
Daiki NAKAI ◽  
Naoki MARUYAMA ◽  
Mami YAMAMOTO ◽  
Masafumi HIROTA ◽  
Yujiro KITAIDE ◽  
...  

Author(s):  
Jangwoo Kim ◽  
Paul I. Ro

A feasibility study on developing a small-scale thermoacoustic cooler based on form and size factors for a typical cell phone is presented. First, an approximate analytical model for the temperature difference was derived using the linear theory of thermoacoustics. Cooling performance could be reasonably predicted with the analytical model proposed in this study. Air and helium as the working gases and the operating frequencies of 3 kHz for air and 9.2 kHz for helium are considered within the scope of typical cell phone configurations. A stack as a core of thermoacoustic cooler is designed to accomplish the most effective performance based on normalized parameters. For the 57 mm thermoacoustic cooler operating at 3 kHz with air, the maximum temperature difference of 23.13 °C across the stack in the resonance cavity is achieved with a drive ratio of 2% with air as the medium and Mylar as a stack material. This temperature difference varies depending on the stack placement along the length of the resonance cavity, but the maximum difference was achieved when the center of stack is placed at around 7 mm away from the driver end. The drive ratio, which is proportional to the power required to produce the thermoacoustic effect, is shown to be directly related to the cooling performance achieved by thermoacoustic drivers. For example, while a drive ratio of 2% results in a temperature difference of over 20 °C at its maximum, a drive ratio of 0.2% causes a temperature difference less than 1 °C. This will be one of hardware issues to be considered in making commercially viable products. The possibility of omitting heat exchangers in the thermoacoustic cooler is investigated considering their manufacturing cost and the relatively minute improvement they bring to overall cooling for small-scale systems. The numerical result of the thermoacoustic cooling system based on design environment for low-amplitude thermoacoustic energy conversion (DeltaEC) is compared to the theoretical result. Discrepancies between the two results exist in the range of 10–15% mainly due to the limitation imposed by short stack considerations and the linear theory of thermoacoustics.


2012 ◽  
Vol 2012 (0) ◽  
pp. 29-30
Author(s):  
Nishimura Takuma ◽  
Yukio Tada ◽  
Tomoaki Kyoden ◽  
Akira Takimoto ◽  
Hajime Onishi

2010 ◽  
Vol 2010 (0) ◽  
pp. 153-154
Author(s):  
Tomoaki Kyoden ◽  
Yukio Tada ◽  
Hiroto Tazuke ◽  
Akira Takimoto ◽  
Hajime Onishi

2019 ◽  
Vol 13 (3) ◽  
pp. 5278-5293
Author(s):  
Vipul Patel ◽  
Rupesh Shah

The present research aims to analyse diffusion flame in a tube type burner with Liquefied petroleum gas (LPG) as a fuel. An experimental investigation is performed to study flame appearance, flame stability, Soot free length fraction (SFLF) and CO emission of LPG diffusion flame. Effects of varying air and fuel velocities are analysed to understand the physical process involved in combustion. SFLF is measured to estimate the reduction of soot. Stability limits of the diffusion flame are characterized by the blowoff velocity. Emission characteristic in terms of CO level is measured at different equivalence ratios. Experimental results show that the air and fuel velocity strongly influences the appearance of LPG diffusion flame. At a constant fuel velocity, blue zone increases and the luminous zone decreases with the increase in air velocity. It is observed that the SFLF increases with increasing air velocity at a constant fuel velocity. It is observed that the blowoff velocity of the diffusion flame increases as fuel velocity increases. Comparison of emission for flame with and without swirl indicates that swirl results in low emission of CO and higher flame stability. Swirler with 45° vanes achieved the lowest CO emission of 30 ppm at Φ = 1.3.


2011 ◽  
Vol 1 (9) ◽  
pp. 65-67
Author(s):  
Pritesh S Patel ◽  
◽  
Prof. Dattatraya G Subhedar ◽  
Prof. Kamlesh V Chauhan

Sign in / Sign up

Export Citation Format

Share Document